Joseph C Bear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719873/publications.pdf

Version: 2024-02-01

430874 454955 34 914 18 30 citations h-index g-index papers 35 35 35 1911 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superhydrophobic Photocatalytic Surfaces through Direct Incorporation of Titania Nanoparticles into a Polymer Matrix by Aerosol Assisted Chemical Vapor Deposition. Advanced Materials, 2012, 24, 3505-3508.	21.0	167
2	Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Applied Physics Letters, 2014, 104, .	3.3	101
3	Copperâ€Doped CdSe/ZnS Quantum Dots: Controllable Photoactivated Copper(I) Cation Storage and Release Vectors for Catalysis. Angewandte Chemie - International Edition, 2014, 53, 1598-1601.	13.8	58
4	A general method for the incorporation of nanoparticles into superhydrophobic films by aerosol assisted chemical vapour deposition. Journal of Materials Chemistry A, 2013, 1, 4336.	10.3	47
5	Photocatalytic Evidence of the Rutileâ€toâ€Anatase Electron Transfer in Titania. Advanced Materials Interfaces, 2014, 1, 1400069.	3.7	43
6	Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1, 334-343.	3.5	41
7	Nanoparticle–sulphur "inverse vulcanisation―polymer composites. Chemical Communications, 2015, 51, 10467-10470.	4.1	35
8	Active removal of waste dye pollutants using Ta3N5/W18O49 nanocomposite fibres. Scientific Reports, 2017, 7, 4090.	3.3	29
9	Radio-metal cross-linking of alginate hydrogels for non-invasive in vivo imaging. Biomaterials, 2020, 243, 119930.	11.4	29
10	Organic–inorganic hybrid materials: nanoparticle containing organogels with myriad applications. Chemical Communications, 2014, 50, 14418-14420.	4.1	28
11	Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands. Journal of Colloid and Interface Science, 2015, 460, 29-35.	9.4	26
12	pH-Responsive nanocomposite fibres allowing MRI monitoring of drug release. Journal of Materials Chemistry B, 2020, 8, 7264-7274.	5.8	25
13	Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation. ACS Omega, 2018, 3, 4342-4351.	3 . 5	24
14	Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Scientific Reports, 2016, 6, 34271.	3.3	23
15	Surface Interactions and Mechanisms Study on the Removal of Iodide from Water by Use of Natural Zeolite-Based Silver Nanocomposites. Nanomaterials, 2020, 10, 1156.	4.1	21
16	Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale, 2017, 9, 16586-16590.	5.6	20
17	Doping Group IIB Metal lons into Quantum Dot Shells via the Oneâ€Pot Decomposition of Metalâ€Dithiocarbamates. Advanced Optical Materials, 2015, 3, 704-712.	7.3	19
18	A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia. Scientific Reports, 2016, 6, 20271.	3.3	19

#	Article	IF	Citations
19	SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals. Journal of Materials Chemistry C, 2016, 4, 3379-3384.	5.5	15
20	On-demand, magnetic hyperthermia-triggered drug delivery: optimisation for the GI tract. Journal of Materials Chemistry B, 2016, 4, 1704-1711.	5.8	15
21	Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chemical Science, 2019, 10, 2592-2597.	7.4	15
22	Visible Light Photocatalytic Activity in AACVDâ€Prepared Nâ€modified TiO ₂ Thin Films. Chemical Vapor Deposition, 2014, 20, 91-97.	1.3	14
23	Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites. Processes, 2020, 8, 471.	2.8	13
24	A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials. Faraday Discussions, 2014, 175, 83-95.	3.2	12
25	Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis. Nanoscale, 2015, 7, 17735-17744.	5.6	11
26	Understanding the Effect of Functional Groups on the Seeded Growth of Copper on Carbon Nanotubes for Optimizing Electrical Transmission. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27202-27212.	8.0	11
27	A new family of urea-based low molecular-weight organogelators for environmental remediation: the influence of structure. Soft Matter, 2018, 14, 8821-8827.	2.7	11
28	Superhydrophobic Au/polymer nanocomposite films via AACVD/swell encapsulation tandem synthesis procedure. RSC Advances, 2016, 6, 31146-31152.	3.6	10
29	Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles. Journal of Colloid and Interface Science, 2020, 579, 401-411.	9.4	9
30	Influence of Solvent in Crystal Engineering: A Significant Change to the Order–Disorder Transition in Ferrocene. Journal of the American Chemical Society, 2020, 142, 1731-1734.	13.7	8
31	[{VOCl2(CH2(COOEt)2)}4] as a molecular precursor for thermochromic monoclinic VO2 thin films and nanoparticles. Journal of Materials Chemistry C, 2016, 4, 10453-10463.	5.5	6
32	Ring-fused dimethoxybenzimidazole-benzimidazolequinone (DMBBQ): tunable halogenation and quinone formation using NaX/Oxone. Organic and Biomolecular Chemistry, 2021, 19, 2716-2724.	2.8	3
33	In situ formation of low molecular weight organogelators for slick solidification. RSC Advances, 2020, 10, 13369-13373.	3.6	2
34	Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. Journal of Visualized Experiments, 2016, , .	0.3	1