Xiangnan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7198685/publications.pdf Version: 2024-02-01

XIANCNAN LILI

#	Article	IF	CITATIONS
1	The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crops Research, 2015, 183, 225-234.	5.1	65
2	Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Science of the Total Environment, 2018, 637-638, 18-29.	8.0	55
3	Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sensing, 2020, 12, 341.	4.0	45
4	A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice. Sensors, 2018, 18, 2172.	3.8	44
5	Assimilating Remote Sensing Phenological Information into the WOFOST Model for Rice Growth Simulation. Remote Sensing, 2019, 11, 268.	4.0	28
6	The Dynamic Assessment Model for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1330-1338.	4.9	27
7	Recent trends in premature mortality and health disparities attributable to ambient PM2.5 exposure in China: 2005–2017. Environmental Pollution, 2021, 279, 116882.	7.5	25
8	Distinguishing two phenotypes of blooms using the normalised difference peak-valley index (NDPI) and Cyano-Chlorophyta index (CCI). Science of the Total Environment, 2018, 628-629, 848-857.	8.0	22
9	Combining DMSP/OLS Nighttime Light with Echo State Network for Prediction of Daily PM2.5 Average Concentrations in Shanghai, China. Atmosphere, 2015, 6, 1507-1520.	2.3	21
10	Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecological Informatics, 2020, 57, 101064.	5.2	21
11	Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecological Indicators, 2021, 121, 106985.	6.3	19
12	Phenology-Based Residual Trend Analysis of MODIS-NDVI Time Series for Assessing Human-Induced Land Degradation. Sensors, 2018, 18, 3676.	3.8	15
13	An Improved Spatiotemporal Data Fusion Method Using Surface Heterogeneity Information Based on ESTARFM. Remote Sensing, 2020, 12, 3673.	4.0	15
14	Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data. Sensors, 2017, 17, 1243.	3.8	14
15	Analyzing the Spatial Scaling Bias of Rice Leaf Area Index From Hyperspectral Data Using Wavelet–Fractal Technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 3068-3080.	4.9	13
16	Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology. Sensors, 2018, 18, 860.	3.8	13
17	Remote examination of the seasonal succession of phytoplankton assemblages from time-varying trends. Journal of Environmental Management, 2019, 246, 687-694.	7.8	12
18	Downscaling of GRACE datasets based on relevance vector machine using InSAR time series to generate maps of groundwater storage changes at local scale. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	12

Xiangnan Liu

#	Article	lF	CITATIONS
19	Developing a New Spectral Index for Detecting Cadmium-Induced Stress in Rice on a Regional Scale. International Journal of Environmental Research and Public Health, 2019, 16, 4811.	2.6	11
20	Alternative Fuzzy Cluster segmentation of remote sensing images based on Adaptive Genetic Algorithm. Chinese Geographical Science, 2009, 19, 83-88.	3.0	9
21	Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors, 2016, 16, 340.	3.8	9
22	Optimizing the Temporal Scale in the Assimilation of Remote Sensing and WOFOST Model for Dynamically Monitoring Heavy Metal Stress in Rice. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 1685-1695.	4.9	9
23	Remote estimation of cyanobacterial blooms using the risky grade index (RGI) and coverage area index (CAI): a case study in the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2017, 24, 19044-19056.	5.3	9
24	Temporal Interpolation of Satellite-Derived Leaf Area Index Time Series by Introducing Spatial-Temporal Constraints for Heterogeneous Grasslands. Remote Sensing, 2017, 9, 968.	4.0	9
25	Identifying rice stress on a regional scale from multi-temporal satellite images using a Bayesian method. Environmental Pollution, 2019, 247, 488-498.	7.5	9
26	Root mass ratio: index derived by assimilation of synthetic aperture radar and the improved World Food Study model for heavy metal stress monitoring in rice. Journal of Applied Remote Sensing, 2016, 10, 026038.	1.3	6
27	Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice. Journal of Applied Remote Sensing, 2017, 11, 026036.	1.3	6
28	Parallel Computing for Obtaining Regional Scale Rice Growth Conditions Based on WOFOST and Satellite Images. IEEE Access, 2020, 8, 223675-223685.	4.2	6
29	Spatiotemporal Variability of Chlorophyll a and Sea Surface Temperature in the Northern South China Sea from 2002 to 2012. Canadian Journal of Remote Sensing, 2015, 41, 547-560.	2.4	5
30	Estimating Nitrogen Content of Corn Based on Wavelet Energy Coefficient and BP Neural Network. , 2015, , .		4
31	Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms. Sensors, 2018, 18, 4425.	3.8	4
32	A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis. International Journal of Environmental Research and Public Health, 2019, 16, 350.	2.6	4
33	Spatio-temporal Index Based on Time Series of Leaf Area Index for Identifying Heavy Metal Stress in Rice under Complex Stressors. International Journal of Environmental Research and Public Health, 2020, 17, 2265.	2.6	4
34	Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China. GIScience and Remote Sensing, 2022, 59, 215-233.	5.9	4
35	Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors, 2018, 18, 1230.	3.8	2
36	Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice. International Journal of Environmental Research and Public Health, 2018, 15, 461.	2.6	2

#	Article	IF	CITATIONS
37	Combination of Crop Growth Model and Radiation Transfer Model with Remote Sensing Data Assimilation for Fapar Estimation. , 2018, , .		1
38	Online Forest Disturbance Detection at the Sub-Annual Scale Using Spatial Context From Sparse Landsat Time Series. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	1
39	A random forest model for estimating Canopy Chlorophyll Content in rice using hyperspectral measurements. , 2013, , .		0
40	Assessment of heavy metal stress using hyperspectral data. , 2017, , .		0