List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7198525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling responses to natural stressor and human impact gradients in river ecosystems across Europe. Journal of Applied Ecology, 2022, 59, 537-548.	1.9	11
2	Are patterns of sampling effort and completeness of inventories congruent? A test using databases for five insect taxa in the Iberian Peninsula. Insect Conservation and Diversity, 2022, 15, 406-415.	1.4	8
3	Cryptic lineages, cryptic barriers: historical seascapes and oceanic fronts drive genetic diversity in supralittoral rockpool beetles (Coleoptera: Hydraenidae). Zoological Journal of the Linnean Society, 2022, 196, 740-756.	1.0	5
4	Lack of congruence between fundamental and realised aridity niche in a lineage of water beetles. Freshwater Biology, 2022, 67, 1214-1227.	1.2	2
5	Updating the presence, distribution and chorology of Moroccan Dryopoidea (Coleoptera: Elmidae and) Tj ETQq1	1 0.78431 0.6	4 rgBT /Over
6	Checklist of Moroccan aquatic beetles (Coleoptera: Hydraenidae Mulsant, 1844). New records and updates. Zootaxa, 2022, 5129, 451-504.	0.2	3
7	Annotated checklist of water scavenger beetles (Coleoptera: Polyphaga: Hydrophilidae) of Morocco. Aquatic Insects, 2021, 42, 91-159.	0.6	9
8	Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic Beetles. Insects, 2021, 12, 285.	1.0	10
9	Are aquatic Hemiptera good indicators of environmental river conditions?. Aquatic Ecology, 2021, 55, 791-806.	0.7	5
10	Threatened endemic water beetles from Morocco. Journal of Insect Conservation, 2021, 25, 465-477.	0.8	8
11	Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Molecular Ecology, 2021, 30, 4189-4203.	2.0	8
12	An updated checklist of Gyrinidae, Haliplidae, Noteridae, Hygrobiidae and Dytiscidae (Coleoptera:) Tj ETQq0 0 0 r	gBT_{Overl	oçk 10 Tf 50
13	Assessing the capacity of endemic alpine water beetles to face climate change. Insect Conservation and Diversity, 2020, 13, 271-282.	1.4	14
14	Longitudinal distribution of macroinvertebrate in a very wet North African Basin: Oued Melloulou (Morocco). Annales De Limnologie, 2020, 56, 17.	0.6	12
15	DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Scientific Data, 2020, 7, 386.	2.4	73
16	The alien boatman Trichocorixa verticalis verticalis (Hemiptera: Corixidae) is expanding in Morocco. , 2020, 39, 49-59.		14

17	Role of cuticle hydrocarbons composition in the salinity tolerance of aquatic beetles. Journal of Insect Physiology, 2019, 117, 103899.	0.9	9
18	Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshwater Biology, 2019, 64, 1064-1077	1.2	51

⁸ intermittence in Mediterranean streams. Freshwater Biology, 2019, 64, 1064-1077.

#	Article	IF	CITATIONS
19	Short-Term Responses of Aquatic and Terrestrial Biodiversity to Riparian Restoration Measures Designed to Control the Invasive Arundo donax L Water (Switzerland), 2019, 11, 2551.	1.2	14
20	Evaluating anthropogenic impacts on naturally stressed ecosystems: Revisiting river classifications and biomonitoring metrics along salinity gradients. Science of the Total Environment, 2019, 658, 912-921.	3.9	17
21	Do all roads lead to Rome? Exploring community trajectories in response to anthropogenic salinization and dilution of rivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180009.	1.8	23
22	Effects of salinity changes on aquatic organisms in a multiple stressor context. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180011.	1.8	105
23	KnowBR: An application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecological Indicators, 2018, 91, 241-248.	2.6	83
24	Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). Zoologica Scripta, 2018, 47, 63-71.	0.7	12
25	New data on the distribution of aquatic bugs (Hemiptera) from eastern Morocco with notes on chorology. Zootaxa, 2018, 4459, 139.	0.2	15
26	Insect communities in saline waters consist of realized but not fundamental niche specialists. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 374, .	1.8	13
27	Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. Journal of Experimental Biology, 2017, 220, 1277-1286.	0.8	31
28	Biological invasion modifies the coâ€occurrence patterns of insects along a stress gradient. Functional Ecology, 2017, 31, 1957-1968.	1.7	30
29	Metabolic and reproductive plasticity of core and marginal populations of the eurythermic saline water bug Sigara selecta (Hemiptera: Corixidae) in a climate change context. Journal of Insect Physiology, 2017, 98, 59-66.	0.9	16
30	The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. Molecular Ecology, 2017, 26, 5614-5628.	2.0	18
31	Epibionts on Hydraena species (Coleoptera: Hydraenidae) from high mountain rivers of Pyrenees (Ordesa and Monte Perdido National Park),Âwith the description of a new species. Zootaxa, 2017, 4317, 79.	0.2	1
32	A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae). Zootaxa, 2017, 4317, 499.	0.2	9
33	Cuticle hydrocarbons in saline aquatic beetles. PeerJ, 2017, 5, e3562.	0.9	13
34	What traits underpin the successful establishment and spread of the invasive water bug Trichocorixa verticalis verticalis?. Hydrobiologia, 2016, 768, 273-286.	1.0	20
35	Freshwater ecosystems and aquatic insects: a paradox in biological invasions. Biology Letters, 2016, 12, 20151075.	1.0	26
36	A new species of Aphelocheirus (Hemiptera: Heteroptera: Aphelocheiridae)Âfrom Morocco. Zootaxa, 2016, 4173, 577.	0.2	6

#	Article	IF	CITATIONS
37	Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae). Biology Letters, 2016, 12, 20160130.	1.0	11
38	Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ, 2016, 4, e2382.	0.9	22
39	The Comparative Osmoregulatory Ability of Two Water Beetle Genera Whose Species Span the Fresh-Hypersaline Gradient in Inland Waters (Coleoptera: Dytiscidae, Hydrophilidae). PLoS ONE, 2015, 10, e0124299.	1.1	33
40	ÂÂCross-taxon congruence in wetlands: Assessing the value of waterbirds as surrogates of macroinvertebrate biodiversity in Mediterranean Ramsar sites. Ecological Indicators, 2015, 49, 204-215.	2.6	63
41	How well do protected area networks support taxonomic and functional diversity in non-target taxa? The case of Iberian freshwaters. Biological Conservation, 2015, 187, 134-144.	1.9	29
42	Similarity in the difference: changes in community functional features along natural and anthropogenic stress gradients. Ecology, 2015, 96, 2458-2466.	1.5	39
43	Atlas of Iberian water beetles (ESACIB database). ZooKeys, 2015, 520, 147-154.	0.5	2
44	Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. Molecular Ecology, 2014, 23, 360-373.	2.0	32
45	Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecological Indicators, 2014, 45, 456-464.	2.6	56
46	Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. Journal of Insect Physiology, 2013, 59, 1076-1084.	0.9	27
47	The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 2013, 6, 363-379.	1.1	54
48	Integrative taxonomy and conservation of cryptic beetles in the Mediterranean region (Hydrophilidae). Zoologica Scripta, 2013, 42, 182-200.	0.7	34
49	Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 2013, 22, 796-805.	2.7	142
50	Preserving the evolutionary history of freshwater biota in Iberian National Parks. Biological Conservation, 2013, 162, 116-126.	1.9	32
51	How Far Could the Alien Boatman Trichocorixa verticalis verticalis Spread? Worldwide Estimation of Its Current and Future Potential Distribution. PLoS ONE, 2013, 8, e59757.	1.1	28
52	Do protected areas represent species' optimal climatic conditions? A test using <scp>I</scp> berian water beetles. Diversity and Distributions, 2013, 19, 1407-1417.	1.9	30
53	<p class="HeadingRunIn">Stictonectes abellani sp. n. (Coleoptera: Dytiscidae: Hydroporinae) from the Iberian Peninsula, with notes on the phylogeny, ecology and distribution of the Iberian species of the genus</p> . Zootaxa, 2013, 3745, 533.	0.2	5
54	Are patterns in the taxonomic, biological and ecological traits of water beetles congruent in Mediterranean ecosystems?. Freshwater Biology, 2012, 57, 2192-2210.	1.2	16

#	Article	IF	CITATIONS
55	Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecological Entomology, 2012, 37, 508-520.	1.1	14
56	Concordance between realised and fundamental niches in three Iberian <i>Sigara</i> species (Hemiptera: Corixidae) along a gradient of salinity and anionic composition. Freshwater Biology, 2012, 57, 2580-2590.	1.2	20
57	Aquatic macroinvertebrate biodiversity: patterns and surrogates in mountainous Spanish national parks. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 598-615.	0.9	28
58	Impact of chronic and pulse dilution disturbances on metabolism and trophic structure in a saline Mediterranean stream. Hydrobiologia, 2012, 686, 225-239.	1.0	12
59	Assessing the quality and usefulness of different taxonomic groups inventories in a semiarid Mediterranean region. Biodiversity and Conservation, 2012, 21, 1561-1575.	1.2	9
60	Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Global Change Biology, 2012, 18, 2135-2146.	4.2	63
61	Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). Journal of Biogeography, 2012, 39, 984-994.	1.4	94
62	Water beetle biodiversity in Mediterranean standing waters: assemblage composition, environmental drivers and nestedness patterns. Insect Conservation and Diversity, 2012, 5, 146-158.	1.4	24
63	Habitat type mediates equilibrium with climatic conditions in the distribution of Iberian diving beetles. Clobal Ecology and Biogeography, 2012, 21, 988-997.	2.7	21
64	How to identify future sampling areas when information is biased and scarce: An example using predictive models for species richness of Iberian water beetles. Journal for Nature Conservation, 2011, 19, 54-59.	0.8	15
65	Mediterranean saline streams in southeast Spain: What do we know?. Journal of Arid Environments, 2011, 75, 1352-1359.	1.2	104
66	The genus Aphelocheirus Westwood, 1833 (Hemiptera: Aphelocheiridae) in the Iberian Peninsula. Zootaxa, 2011, 2771, 1.	0.2	11
67	Environmental niche divergence between genetically distant lineages of an endangered water beetle. Biological Journal of the Linnean Society, 2011, 103, 891-903.	0.7	15
68	The contribution of standing waters to aquatic biodiversity: the case of water beetles in southeastern Iberia. Aquatic Ecology, 2010, 44, 205-216.	0.7	21
69	Reduced salinities compromise the thermal tolerance of hypersaline specialist diving beetles. Physiological Entomology, 2010, 35, 265-273.	0.6	28
70	Analyse de la vulnérabilité des coléoptères aquatiques dans la rive sud méditerranéenne: cas du Rif Marocain. Annales De La Societe Entomologique De France, 2009, 45, 309-320.	0.4	12
71	Effects of dilution stress on the functioning of a saline Mediterranean stream. Hydrobiologia, 2009, 619, 119-132.	1.0	20
72	Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia, 2009, 634, 167-183.	1.0	59

#	Article	IF	CITATIONS
73	Parallel habitatâ€driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles. Molecular Ecology, 2009, 18, 3885-3902.	2.0	58
74	Bias in freshwater biodiversity sampling: the case of Iberian water beetles. Diversity and Distributions, 2008, 14, 754-762.	1.9	77
75	Are the endemic water beetles of the Iberian Peninsula and the Balearic Islands effectively protected?. Biological Conservation, 2008, 141, 1612-1627.	1.9	75
76	Effectiveness of protected area networks in representing freshwater biodiversity: the case of a Mediterranean river basin (south-eastern Spain). Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 361-374.	0.9	60
77	Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Systems, 2006, 2, 12.	2.0	106
78	Irrigation pools as macroinvertebrate habitat in a semi-arid agricultural landscape (SE Spain). Journal of Arid Environments, 2006, 67, 255-269.	1.2	51
79	The Hydradephaga of the Segura basin (SE Spain): twentyfive years studying water beetles (Coleoptera). Memorie Della Società Entomologica Italiana, 2006, 85, 137.	0.1	17
80	Can taxonomic distinctness assess anthropogenic impacts in inland waters? A case study from a Mediterranean river basin. Freshwater Biology, 2006, 51, 1744-1756.	1.2	67
81	Nutrient And Particulate Inputs Into The Mar Menor Lagoon (Se Spain) From An Intensive Agricultural Watershed. Water, Air, and Soil Pollution, 2006, 176, 37-56.	1.1	114
82	Are Water Beetles Good Indicators of Biodiversity in Mediterranean Aquatic Ecosystems? The Case of the Segura River Basin (SE Spain). Biodiversity and Conservation, 2006, 15, 4507-4520.	1.2	111
83	Conservation genetics in hypersaline inland waters: mitochondrial diversity and phylogeography of an endangered Iberian beetle (Coleoptera: Hydraenidae). Conservation Genetics, 2006, 8, 79-88.	0.8	44
84	Conservation of Freshwater Biodiversity: a Comparison of Different Area Selection Methods. Biodiversity and Conservation, 2005, 14, 3457-3474.	1.2	63
85	Assessing conservation priorities for insects: status of water beetles in southeast Spain. Biological Conservation, 2005, 121, 79-90.	1.9	60
86	An Ecological Integrity Index for Littoral Wetlands in Agricultural Catchments of Semiarid Mediterranean Regions. Environmental Management, 2004, 33, 412-430.	1.2	33
87	Selecting areas to protect the biodiversity of aquatic ecosystems in a semiarid Mediterranean region using water beetles. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14, 465-479.	0.9	42
88	TheAGABUS(GAURODYTES)BRUNNEUSGroup, With Description of a New Species from the Western Mediterranean (Coleoptera: Dytiscidae). The Coleopterists Bulletin, 2001, 55, 107-112.	0.1	13
89	A method for analysing indistinguishable overlapping cohorts in insect secondary production studies. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 989-992.	0.1	0
90	Description of Ochthebius (Asiobates) irenae sp. n. (Coleoptera: Hydraenidae) from the Iberian Peninsula, with Notes on its Ecology. Aquatic Insects, 1999, 21, 147-152.	0.6	3

#	Article	IF	CITATIONS
91	Distribución espacial de los Adephaga acuáticos (Coleoptera) en la cuenca del rio Segura (SE de la) Tj ETQq1	1 0.784314	• rgBT /Overic
92	The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterranean Biology, 0, 25, 1-7.	5.0	37