Yonghai Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7198195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorusâ€Doped Graphite Layers with High Electrocatalytic Activity for the O ₂ Reduction in an Alkaline Medium. Angewandte Chemie - International Edition, 2011, 50, 3257-3261.	7.2	647
2	High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy, 2018, 53, 97-107.	8.2	300
3	A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceramics International, 2018, 44, 18886-18893.	2.3	276
4	Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Industrial & Engineering Chemistry Research, 2017, 56, 10689-10701.	1.8	267
5	Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sciences, 2009, 11, 129-138.	1.5	266
6	2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 236-245.	10.8	242
7	Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 3978-3982.	7.2	234
8	Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon, 2013, 57, 433-442.	5.4	209
9	Carbocatalysis in Liquidâ€Phase Reactions. Angewandte Chemie - International Edition, 2017, 56, 936-964.	7.2	209
10	Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10, 1589-1596.	3.7	170
11	Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325, 136-144.	3.1	154
12	Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chemical Communications, 2013, 49, 8151.	2.2	149
13	Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. Journal of Materials Chemistry A, 2018, 6, 13062-13074.	5.2	145
14	Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ACS Catalysis, 2014, 4, 1617-1625.	5.5	143
15	Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies. Nano Energy, 2019, 60, 43-51.	8.2	136
16	Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation. Journal of Physical Chemistry C, 2008, 112, 6758-6763.	1.5	128
17	Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. Journal of Catalysis, 2017, 348, 100-109.	3.1	126
18	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 2016, 109, 640-649.	5.4	125

#	Article	IF	CITATIONS
19	Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. Journal of Power Sources, 2015, 286, 495-503.	4.0	121
20	Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catalysis, 2019, 9, 2893-2901.	5.5	101
21	Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Applied Catalysis A: General, 2007, 321, 190-197.	2.2	100
22	Aerobic Liquidâ€₽hase Oxidation of Ethylbenzene to Acetophenone Catalyzed by Carbon Nanotubes. ChemCatChem, 2013, 5, 1578-1586.	1.8	97
23	Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter. Chemical Engineering Journal, 2014, 240, 434-442.	6.6	96
24	A bi-functional Co–CaO–Ca 12 Al 14 O 33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen. Chemical Engineering Journal, 2016, 286, 329-338.	6.6	81
25	Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catalysis Science and Technology, 2016, 6, 1007-1015.	2.1	80
26	Bifunctional CdS@Co ₉ S ₈ /Ni ₃ S ₂ catalyst for efficient electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 3083-3096.	5.2	78
27	Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes. Chemical Engineering Journal, 2012, 204-206, 98-106.	6.6	77
28	ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chemical Engineering Journal, 2019, 362, 658-666.	6.6	76
29	High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochemistry Communications, 2014, 40, 24-27.	2.3	74
30	Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal, 2021, 421, 128766.	6.6	73
31	Novel Highly Active Anatase/Rutile TiO ₂ Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry and Engineering, 2018, 6, 10823-10832.	3.2	69
32	Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism. Journal of Energy Chemistry, 2020, 48, 308-321.	7.1	69
33	Revealing active-site structure of porous nitrogen-defected carbon nitride for highly effective photocatalytic hydrogen evolution. Chemical Engineering Journal, 2019, 373, 687-699.	6.6	68
34	The Evolution from a Typical Type-I CdS/ZnS to Type-II and Z-Scheme Hybrid Structure for Efficient and Stable Hydrogen Production under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 4537-4546.	3.2	65
35	Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to γ-Valerolactone: Effect of Metal–Support Interaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16501-16510.	3.2	64
36	Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Energy Chemistry, 2020, 44, 106-114.	7.1	62

#	Article	IF	CITATIONS
37	A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO 2 with enhanced photocatalytic hydrogen production under solar light. International Journal of Hydrogen Energy, 2016, 41, 3446-3455.	3.8	61
38	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon, 2017, 115, 503-514.	5.4	60
39	Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions. Electrochimica Acta, 2018, 265, 32-40.	2.6	58
40	The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction. Electrochemistry Communications, 2014, 40, 5-8.	2.3	55
41	Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene. ACS Catalysis, 2020, 10, 129-137.	5.5	55
42	Carbon nanotubes as catalyst for the aerobic oxidation of cumene to cumene hydroperoxide. Applied Catalysis A: General, 2014, 478, 1-8.	2.2	54
43	Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage. International Journal of Hydrogen Energy, 2019, 44, 29975-29985.	3.8	50
44	Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co N C. Journal of Catalysis, 2019, 377, 283-292.	3.1	48
45	Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3. Journal of Energy Chemistry, 2020, 43, 90-97.	7.1	48
46	sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catalysis Science and Technology, 2013, 3, 2654.	2.1	46
47	Mechanistic Insight into the Catalytic Oxidation of Cyclohexane over Carbon Nanotubes: Kinetic and In Situ Spectroscopic Evidence. Chemistry - A European Journal, 2013, 19, 9818-9824.	1.7	44
48	Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media. Journal of Energy Chemistry, 2019, 34, 33-42.	7.1	44
49	Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 15108-15118.	3.2	42
50	Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon, 2018, 133, 464-473.	5.4	41
51	Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. Chemical Engineering Journal, 2019, 361, 547-558.	6.6	41
52	CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting. Chemical Engineering Journal, 2021, 405, 126231.	6.6	41
53	A kinetics study on cumene oxidation catalyzed by carbon nanotubes: Effect of N-doping. Chemical Engineering Science, 2018, 177, 391-398.	1.9	40
54	Revealing the Relationship between Photocatalytic Properties and Structure Characteristics of TiO ₂ Reduced by Hydrogen and Carbon Monoxide Treatment. ChemSusChem, 2018, 11, 2766-2775.	3.6	40

Yonghai Cao

#	Article	IF	CITATIONS
55	Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogenâ€Doped Carbon Nanotubes. ChemCatChem, 2014, 6, 555-560.	1.8	38
56	Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance. Journal of Materials Chemistry A, 2016, 4, 9881-9889.	5.2	38
57	In-situ photo-deposition CuO1â^' cluster on TiO2 for enhanced photocatalytic H2-production activity. International Journal of Hydrogen Energy, 2017, 42, 19942-19950.	3.8	38
58	Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy and Environmental Science, 2018, 11, 660-668.	15.6	38
59	Synergistic carbon nanotube aerogel – Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 3238-3244.	5.2	35
60	Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution. International Journal of Hydrogen Energy, 2017, 42, 928-937.	3.8	35
61	Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates. Chemical Engineering Journal, 2019, 360, 47-53.	6.6	35
62	Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene. Chemical Engineering Journal, 2016, 306, 806-815.	6.6	34
63	Solvent effect on the allylic oxidation of cyclohexene catalyzed by nitrogen doped carbon nanotubes. Catalysis Communications, 2017, 88, 99-103.	1.6	34
64	Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 383, 123133.	6.6	33
65	Aerobic oxidation of α-pinene catalyzed by carbon nanotubes. Catalysis Science and Technology, 2015, 5, 3935-3944.	2.1	32
66	Mn ₃ O ₄ @C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism. ChemElectroChem, 2019, 6, 359-368.	1.7	32
67	The zinc vacancy induced CdS/ZnS Z-scheme structure as a highly stable photocatalyst for hydrogen production. Journal of Alloys and Compounds, 2021, 888, 161620.	2.8	32
68	Effective dismantling of waste printed circuit board assembly with methanesulfonic acid containing hydrogen peroxide. Environmental Progress and Sustainable Energy, 2017, 36, 873-878.	1.3	30
69	Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 5041-5049.	3.6	28
70	Biomass-Derived Nitrogen-Doped Porous Carbons Activated by Magnesium Chloride as Ultrahigh-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 21756-21767.	1.8	28
71	Hydrogen Production from Sorption-Enhanced Steam Reforming of Phenol over a Ni–Ca–Al–O Bifunctional Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 7111-7120.	3.2	28
72	One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Applied Catalysis B: Environmental, 2022, 303, 120910.	10.8	28

#	Article	IF	CITATIONS
73	Branched hydrogenated TiO 2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light. International Journal of Hydrogen Energy, 2016, 41, 20192-20197.	3.8	27
74	Controllable Preparation of Holey Graphene and Electrocatalytic Performance for Oxygen Reduction Reaction. Electrochimica Acta, 2017, 228, 203-213.	2.6	26
75	Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions. International Journal of Hydrogen Energy, 2018, 43, 5551-5560.	3.8	26
76	Preparation of CdS-CoSx photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 27795-27805.	3.8	26
77	Correlation between the in-plain substrate strain and electrocatalytic activity of strontium ruthenate thin films in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 10794-10800.	5.2	25
78	Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal–carbon interaction for phenol hydrogenation. Chemical Engineering Journal, 2022, 436, 131758.	6.6	24
79	Thermoelectric–photoelectric composite nanocables induced a larger efficiency in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 9362-9369.	5.2	23
80	Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH. Journal of CO2 Utilization, 2017, 21, 219-223.	3.3	23
81	O ₂ and H ₂ O ₂ transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 21950-21959.	1.3	22
82	Trace amounts of Cu(OAc) ₂ boost the efficiency of cumene oxidation catalyzed by carbon nanotubes washed with HCl. Catalysis Science and Technology, 2020, 10, 2523-2530.	2.1	22
83	Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 10951-10961.	3.2	21
84	Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. Journal of Colloid and Interface Science, 2020, 566, 46-59.	5.0	21
85	Essential analysis of cyclic voltammetry of methanol electrooxidation using the differential electrochemical mass spectrometry. Journal of Power Sources, 2021, 509, 230397.	4.0	21
86	MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 31008-31019.	3.8	20
87	Chlorineâ€Promoted Nitrogen and Sulfur Coâ€Đoped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. ChemElectroChem, 2020, 7, 320-327.	1.7	20
88	New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogenâ€doped Carbon Nanotubes. ChemCatChem, 2021, 13, 646-655.	1.8	20
89	Understanding the Catalytic Sites in Porous Hexagonal Boron Nitride for the Epoxidation of Styrene. ACS Catalysis, 2021, 11, 8872-8880.	5.5	20
90	Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances. Electrochimica Acta, 2017, 252, 368-373.	2.6	19

#	Article	IF	CITATIONS
91	Solution growth of peony-like copper hydroxyl-phosphate (Cu 2 (OH)PO 4) flowers on Cu foil and their photocatalytic activity under visible light. Materials and Design, 2016, 100, 30-36.	3.3	18
92	Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catalysis Science and Technology, 2017, 7, 4431-4436.	2.1	18
93	Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation. Journal of Colloid and Interface Science, 2019, 538, 327-339.	5.0	18
94	Selective Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Nitrates. Frontiers in Chemistry, 2020, 8, 151.	1.8	16
95	The effect of surface oxygenated groups of carbon nanotubes on liquid phase catalytic oxidation of cumene. Catalysis Science and Technology, 2016, 6, 2396-2402.	2.1	15
96	Dual Functional CuO _{1–<i>x</i>} Clusters for Enhanced Photocatalytic Activity and Stability of a Pt Cocatalyst in an Overall Water-Splitting Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17340-17351.	3.2	15
97	PtRu Catalysts on Nitrogen-Doped Carbon Nanotubes with Conformal Hydrogenated TiO ₂ Shells for Methanol Oxidation. ACS Applied Nano Materials, 2022, 5, 3275-3288.	2.4	15
98	Bi-functional particles for integrated thermo-chemical processes: Catalysis and beyond. Particuology, 2021, 56, 10-32.	2.0	14
99	Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbonâ€Based Catalysts Evidenced by Theoretical Calculations. ChemSusChem, 2019, 12, 1133-1138.	3.6	13
100	Co–N–C-Supported Platinum Catalyst: Synergistic Effect on the Aerobic Oxidation of Glycerol. ACS Sustainable Chemistry and Engineering, 2020, 8, 19062-19071.	3.2	12
101	High-purity hydrogen production by sorption-enhanced steam reforming of iso-octane over a Pd-promoted Ni-Ca-Al-O bi-functional catalyst. Fuel, 2021, 293, 120430.	3.4	11
102	Inhibitory effect of Zn ²⁺ on the chainâ€initiation process of cumene oxidation. International Journal of Quantum Chemistry, 2021, 121, e26780.	1.0	11
103	MnO2 nanoparticles supported on CNTs for cumene oxidation: Synergistic effect and kinetic modelling. Chemical Engineering Journal, 2022, 444, 136666.	6.6	11
104	Production of high-purity hydrogen from paper recycling black liquor via sorption enhanced steam reforming. Green Energy and Environment, 2021, 6, 771-779.	4.7	9
105	Confined Cobalt on Carbon Nanotubes in Solventâ€free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer. ChemCatChem, 2022, 14, .	1.8	7
106	Solvent-Free Production of ε-Caprolactone from Oxidation of Cyclohexanone Catalyzed by Nitrogen-Doped Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2022, 61, 2037-2044.	1.8	6
107	Catalytic Synthesis of Lactones from Alkanes in the Presence of Aldehydes and Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2022, 10, 6713-6723.	3.2	4
108	Highly Enhanced Methanol Electrooxidation on Pt/Nâ^'CNTâ€Decorated FeP**. ChemElectroChem, 2021, 8, 2442-2448.	1.7	3

#	Article	IF	CITATIONS
109	Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tertâ€Butyl Hydroperoxide. ChemistrySelect, 2021, 6, 6895-6903.	0.7	2
110	Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2022, 13, 6187-6193.	2.1	1