
## Phornphimon Maitarad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7197918/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Facet–Activity Relationship of TiO <sub>2</sub> in Fe <sub>2</sub> O <sub>3</sub> /TiO <sub>2</sub><br>Nanocatalysts for Selective Catalytic Reduction of NO with NH <sub>3</sub> : <i>In Situ</i> DRIFTs and<br>DFT Studies. Journal of Physical Chemistry C, 2017, 121, 4970-4979. | 3.1  | 144       |
| 2  | Improved NO <sub>x</sub> reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts. Environmental Science: Nano, 2018, 5, 1408-1419.                                                                                                  | 4.3  | 86        |
| 3  | Alkali-Resistant NO <sub><i>x</i></sub> Reduction over SCR Catalysts via Boosting NH <sub>3</sub><br>Adsorption Rates by In Situ Constructing the Sacrificed Sites. Environmental Science &<br>Technology, 2020, 54, 13314-13321.                                                    | 10.0 | 70        |
| 4  | A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study.<br>Applied Surface Science, 2019, 473, 820-827.                                                                                                                                  | 6.1  | 67        |
| 5  | Metal–Porphyrin: A Potential Catalyst for Direct Decomposition of N <sub>2</sub> O by Theoretical<br>Reaction Mechanism Investigation. Environmental Science & Technology, 2014, 48, 7101-7110.                                                                                      | 10.0 | 44        |
| 6  | Mechanistic insight into the selective catalytic reduction of NO by NH <sub>3</sub> over low-valent titanium-porphyrin: a DFT study. Catalysis Science and Technology, 2016, 6, 3878-3885.                                                                                           | 4.1  | 23        |
| 7  | Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. RSC<br>Medicinal Chemistry, 2021, 12, 430-438.                                                                                                                                     | 3.9  | 22        |
| 8  | Efficient photocatalytic reactions of Cr( <scp>vi</scp> ) reduction and ciprofloxacin and RhB<br>oxidation with Sn( <scp>ii</scp> )-doped BiOBr. Catalysis Science and Technology, 2019, 9, 5953-5961.                                                                               | 4.1  | 18        |
| 9  | Multivariate Synthetic Strategy for Improving Crystallinity of Zwitterionic Squaraineâ€Linked Covalent<br>Organic Frameworks with Enhanced Photothermal Performance. Small, 2022, 18, e2201275.                                                                                      | 10.0 | 17        |
| 10 | Oxotitanium-porphyrin for selective catalytic reduction of NO by NH <sub>3</sub> : a theoretical mechanism study. New Journal of Chemistry, 2018, 42, 16806-16813.                                                                                                                   | 2.8  | 14        |
| 11 | High selective catalyst for ethylene epoxidation to ethylene oxide: A DFT investigation. Applied Surface<br>Science, 2020, 513, 145799.                                                                                                                                              | 6.1  | 9         |
| 12 | Rational Design of Chryseneâ€Based Hybridized Local and Chargeâ€Transfer Molecules as Efficient<br>Nonâ€Doped Deepâ€Blue Emitters for Simple Structured Electroluminescent Devices. Chemistry - an Asian<br>Journal, 2021, , .                                                       | 3.3  | 8         |
| 13 | In Silico Screening of DNA Gyrase B Potent Flavonoids for the Treatment of Clostridium difficile<br>Infection from PhytoHub Database. Brazilian Archives of Biology and Technology, 0, 64, .                                                                                         | 0.5  | 7         |
| 14 | Computational Screening of Newly Designed Compounds against Coxsackievirus A16 and Enterovirus A71. Molecules, 2022, 27, 1908.                                                                                                                                                       | 3.8  | 7         |
| 15 | Iodine-doped covalent organic frameworks with coaxially stacked cruciform anthracenes for high<br>Hall mobility. Chemical Communications, 2022, 58, 6606-6609.                                                                                                                       | 4.1  | 2         |
| 16 | Prediction of the Glass Transition Temperature in Polyethylene Terephthalate/Polyethylene Vanillate<br>(PET/PEV) Blends: A Molecular Dynamics Study. Polymers, 2022, 14, 2858.                                                                                                       | 4.5  | 2         |
| 17 | Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium<br>Porphyrin: A Theoretical Study. Catalysts, 2020, 10, 157.                                                                                                                                 | 3.5  | 1         |