
Sergio Idelsohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7197822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A deterministic pathogen transmission model based on high-fidelity physics. Computer Methods in Applied Mechanics and Engineering, 2022, 401, 114929.	6.6	5
2	A multiscale approach for the study of particle-laden flows using a continuous model. Computer Methods in Applied Mechanics and Engineering, 2022, 401, 115174.	6.6	4
3	A Multiscale Approach for the Numerical Simulation of Turbulent Flows with Droplets. Archives of Computational Methods in Engineering, 2021, 28, 4185-4204.	10.2	11
4	The Pseudo-Direct Numerical Simulation method for multi-scale problems in mechanics. Computer Methods in Applied Mechanics and Engineering, 2021, 380, 113774.	6.6	7
5	High-Fidelity Simulation of Pathogen Propagation, Transmission and Mitigation in the Built Environment. Archives of Computational Methods in Engineering, 2021, 28, 4237-4262.	10.2	12
6	A pseudo-DNS method for the simulation of incompressible fluid flows with instabilities at different scales. Computational Particle Mechanics, 2020, 7, 19-40.	3.0	12
7	Detailed simulation of viral propagation in the built environment. Computational Mechanics, 2020, 66, 1093-1107.	4.0	31
8	A State of the Art Review of the Particle Finite Element Method (PFEM). Archives of Computational Methods in Engineering, 2020, 27, 1709-1735.	10.2	78
9	A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. Journal of Computational Physics, 2019, 380, 295-310.	3.8	11
10	Variational Framework for FIC Formulations in Continuum Mechanics: High Order Tensor-Derivative Transformations and Invariants. Archives of Computational Methods in Engineering, 2018, 25, 919-963.	10.2	1
11	Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space. International Journal for Numerical Methods in Fluids, 2018, 86, 750-769.	1.6	5
12	Reduced order models for thermally coupled low Mach flows. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	1.7	14
13	A Finite Element Model for the Simulation of the UL-94 Burning Test. Fire Technology, 2018, 54, 1783-1805.	3.0	15
14	Global-local HROM for non-linear thermal problems with irreversible changes of material states. Comptes Rendus - Mecanique, 2018, 346, 539-555.	2.1	2
15	An assessment of the potential of PFEM-2 for solving long real-time industrial applications. Computational Particle Mechanics, 2017, 4, 251-267.	3.0	6
16	A-posteriori error estimation for the finite point method with applications to compressible flow. Computational Mechanics, 2017, 60, 219-233.	4.0	7
17	Global–Local ROM for the solution of parabolic problems with highly concentrated moving sources. Computer Methods in Applied Mechanics and Engineering, 2017, 326, 739-756.	6.6	6
18	Elemental enriched spaces for the treatment of weak and strong discontinuous fields. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 535-559.	6.6	9

#	Article	IF	CITATIONS
19	On the issue that Finite Element discretizations violate, nodally, Clausius's postulate of the second law of thermodynamics. Advanced Modeling and Simulation in Engineering Sciences, 2016, 3, .	1.7	0
20	Surface tension problems solved with the particle finite element method using large time-steps. Computers and Fluids, 2016, 141, 90-104.	2.5	12
21	A multiresolution strategy for solving landslides using the Particle Finite Element Method. Acta Geotechnica, 2016, 11, 643-657.	5.7	14
22	General treatment of essential boundary conditions in reduced order models for non-linear problems. Advanced Modeling and Simulation in Engineering Sciences, 2016, 3, .	1.7	10
23	An embedded strategy for the analysis of fluid structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 106-128.	6.6	16
24	A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Computational Mechanics, 2015, 55, 1091-1104.	4.0	41
25	Lagrangian versus Eulerian integration errors. Computer Methods in Applied Mechanics and Engineering, 2015, 293, 191-206.	6.6	19
26	A semi-analytical model for droplet dynamics on the GDL surface of a PEFC electrode. International Journal of Hydrogen Energy, 2015, 40, 5375-5383.	7.1	18
27	Reduced-order subscales for POD models. Computer Methods in Applied Mechanics and Engineering, 2015, 291, 173-196.	6.6	34
28	Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion. Fire and Materials, 2015, 39, 570-584.	2.0	61
29	P1/P0+ elements for incompressible flows with discontinuous material properties. Computer Methods in Applied Mechanics and Engineering, 2014, 271, 185-209.	6.6	10
30	GPGPU implementation of the BFECC algorithm for pure advection equations. Cluster Computing, 2014, 17, 243-254.	5.0	5
31	Comparative accuracy and performance assessment of the finite point method in compressible flow problems. Computers and Fluids, 2014, 89, 53-65.	2.5	10
32	A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems. Computational Mechanics, 2014, 54, 1013-1022.	4.0	7
33	Analysis of multifluid flows with large time steps using the particle finite element method. International Journal for Numerical Methods in Fluids, 2014, 75, 621-644.	1.6	42
34	Evaluating the performance of the particle finite element methodÂin parallel architectures. Computational Particle Mechanics, 2014, 1, 103-116.	3.0	12
35	Improving the k-compressibility of Hyper Reduced Order Models with moving sources: Applications to welding and phase change problems. Computer Methods in Applied Mechanics and Engineering, 2014, 274, 237-263.	6.6	18
36	Application of the finite point method to highâ€Reynolds number compressible flow problems. International Journal for Numerical Methods in Fluids, 2014, 74, 732-748.	1.6	2

#	Article	IF	CITATIONS
37	Recent Advances in the Particle Finite Element Method Towards More Complex Fluid Flow Applications. Computational Methods in Applied Sciences (Springer), 2014, , 267-318.	0.3	4
38	On the Application of Two-Fluid Flows Solver to the Casting Problem. Computational Methods in Applied Sciences (Springer), 2014, , 245-266.	0.3	0
39	Migration of a generic multi-physics framework to HPC environments. Computers and Fluids, 2013, 80, 301-309.	2.5	58
40	Explicit reducedâ€order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2013, 72, 1219-1243.	1.6	55
41	A FFT preconditioning technique for the solution of incompressible flow on GPUs. Computers and Fluids, 2013, 74, 44-57.	2.5	8
42	Parallel adaptive mesh refinement for incompressible flow problems. Computers and Fluids, 2013, 80, 342-355.	2.5	10
43	A domain decomposition strategy for reduced order models. Application to the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2013, 267, 23-42.	6.6	43
44	A meshless finite point method for threeâ€dimensional analysis of compressible flow problems involving moving boundaries and adaptivity. International Journal for Numerical Methods in Fluids, 2013, 73, 323-343.	1.6	13
45	A portable OpenCL-based unstructured edge-based finite element Navier–Stokes solver on graphics hardware. Computers and Fluids, 2013, 81, 134-144.	2.5	9
46	A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles. Computer Methods in Applied Mechanics and Engineering, 2013, 255, 210-225.	6.6	20
47	A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER. Mathematical Models and Methods in Applied Sciences, 2013, 23, 339-367.	3.3	24
48	The Particle Finite Element Method (PFEM). An Effective Numerical Technique for Solving Marine, Naval and Harbour Engineering Problems. Computational Methods in Applied Sciences (Springer), 2013, , 65-81.	0.3	0
49	A coupled PFEM–Eulerian approach for the solution of porous FSI problems. Computational Mechanics, 2012, 50, 805-819.	4.0	51
50	Improving mass conservation in simulation of incompressible flows. International Journal for Numerical Methods in Engineering, 2012, 90, 1435-1451.	2.8	45
51	Combined Eulerian–PFEM approach for analysis of polymers in fire situations. International Journal for Numerical Methods in Engineering, 2012, 92, 782-801.	2.8	24
52	Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method. International Journal for Numerical Methods in Fluids, 2012, 69, 1016-1030.	1.6	6
53	A new enrichment space for the treatment of discontinuous pressures in multiâ€fluid flows. International Journal for Numerical Methods in Fluids, 2012, 70, 829-850.	1.6	36
54	Large time-step explicit integration method for solving problems with dominant convection. Computer Methods in Applied Mechanics and Engineering, 2012, 217-220, 168-185.	6.6	49

#	Article	IF	CITATIONS
55	OpenCLâ€based implementation of an unstructured edgeâ€based finite element convectionâ€diffusion solver on graphics hardware. International Journal for Numerical Methods in Engineering, 2012, 89, 1635-1651.	2.8	20
56	Flow behaviour of negatively buoyant jets in immiscible ambient fluid. Experiments in Fluids, 2012, 52, 261-271.	2.4	8
57	Advances in the Particle Finite Element Method (PFEM) for Solving Coupled Problems in Engineering. Computational Methods in Applied Sciences (Springer), 2011, , 1-49.	0.3	20
58	Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Computational Mechanics, 2011, 48, 307-318.	4.0	142
59	Consistent pressure Laplacian stabilization for incompressible continua via higherâ€order finite calculus. International Journal for Numerical Methods in Engineering, 2011, 87, 171-195.	2.8	27
60	An adaptive finite point method for the shallow water equations. International Journal for Numerical Methods in Engineering, 2011, 88, 180-204.	2.8	5
61	Advances in the simulation of multiâ€fluid flows with the particle finite element method. Application to bubble dynamics. International Journal for Numerical Methods in Fluids, 2011, 67, 1516-1539.	1.6	31
62	A family of residualâ€based stabilized finite element methods for Stokes flows. International Journal for Numerical Methods in Fluids, 2011, 65, 106-134.	1.6	19
63	The challenge of mass conservation in the solution of freeâ€surface flows with the fractionalâ€step method: Problems and solutions. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1313-1330.	2.1	20
64	On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Computational Mechanics, 2010, 46, 115-124.	4.0	29
65	A monolithic Lagrangian approach for fluid–structure interaction problems. Computational Mechanics, 2010, 46, 883-899.	4.0	123
66	Melting and spread of polymers in fire with the particle finite element method. International Journal for Numerical Methods in Engineering, 2010, 81, 1046-1072.	2.8	56
67	Possibilities of the Particle Finite Element Method in Computational Mechanics. Advanced Structured Materials, 2010, , 271-310.	0.5	3
68	A finite point method for adaptive threeâ€dimensional compressible flow calculations. International Journal for Numerical Methods in Fluids, 2009, 60, 937-971.	1.6	27
69	Fluid–structure interaction problems with strong addedâ€mass effect. International Journal for Numerical Methods in Engineering, 2009, 80, 1261-1294.	2.8	76
70	Multi-fluid flows with the Particle Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2750-2767.	6.6	70
71	Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Computational Mechanics, 2008, 43, 125-132.	4.0	94
72	Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 1762-1776.	6.6	208

#	Article	IF	CITATIONS
73	Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 1777-1800.	6.6	190
74	Objectivity tests for Navier–Stokes simulations: The revealing of non-physical solutions produced by Laplace formulations. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4180-4192.	6.6	9
75	The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surface flows and fluid–object interactions. Computers and Fluids, 2007, 36, 27-38.	2.5	82
76	An improved finite point method for tridimensional potential flows. Computational Mechanics, 2007, 40, 949-963.	4.0	41
77	Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3001-3037.	6.6	58
78	Advances in stabilized finite element and particle methods for bulk forming processes. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 6750-6777.	6.6	21
79	Fluid–structure interaction using the particle finite element method. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 2100-2123.	6.6	134
80	Finite element formulation for convective–diffusive problems with sharp gradients using finite calculus. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 1793-1825.	6.6	30
81	To mesh or not to mesh. That is the question…. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 4681-4696.	6.6	84
82	Fractional Step Like Schemes for Free Surface Problems with Thermal Coupling Using the Lagrangian PFEM. Computational Mechanics, 2006, 38, 294-309.	4.0	20
83	Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnica, 2006, 1, 237-252.	5.7	44
84	Particle finite element method in fluid-mechanics including thermal convection-diffusion. Computers and Structures, 2005, 83, 1459-1475.	4.4	62
85	Possibilities of the particle finite element method for fluid-structure interaction problems with free surface waves. Revue Europeenne Des Elements, 2004, 13, 637-666.	0.1	Ο
86	THE PARTICLE FINITE ELEMENT METHOD $\hat{a} \in$ " AN OVERVIEW. International Journal of Computational Methods, 2004, 01, 267-307.	1.3	377
87	Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). Journal of Materials Science: Materials in Medicine, 2004, 15, 541-546.	3.6	35
88	The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering, 2004, 61, 964-989.	2.8	386
89	The meshless finite element method. International Journal for Numerical Methods in Engineering, 2003, 58, 893-912.	2.8	191
90	Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 2649-2667.	6.6	67

#	Article	IF	CITATIONS
91	A Lagrangian meshless finite element method applied to fluid–structure interaction problems. Computers and Structures, 2003, 81, 655-671.	4.4	106
92	The extended Delaunay tessellation. Engineering Computations, 2003, 20, 583-600.	1.4	22
93	A Lagrangian Panel Method in the Time Domain for Moving Free-surface Potential Flows. International Journal of Computational Fluid Dynamics, 2002, 16, 263-275.	1.2	6
94	Numerical Simulation of the 3D Laminar Viscous Flow on a Horizontal-axis Wind Turbine Blade. International Journal of Computational Fluid Dynamics, 2002, 16, 283-295.	1.2	2
95	A finite point method for compressible flow. International Journal for Numerical Methods in Engineering, 2002, 53, 1765-1779.	2.8	92
96	All-hexahedral element meshing: automatic elimination of self-intersecting dual lines. International Journal for Numerical Methods in Engineering, 2002, 55, 1439-1449.	2.8	7
97	Applied hydrodynamic wave-resistance computation by Fourier transform. Ocean Engineering, 2002, 29, 261-278.	4.3	2
98	Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Computer Methods in Applied Mechanics and Engineering, 2001, 191, 583-593.	6.6	36
99	All-hexahedral mesh smoothing with a node-based measure of quality. International Journal for Numerical Methods in Engineering, 2001, 50, 1957-1967.	2.8	21
100	Non-reflective planar boundary condition based on Gauss filter. International Journal for Numerical Methods in Engineering, 2000, 47, 969-983.	2.8	1
101	Announcement ?Meshfree Methods?. International Journal for Numerical Methods in Engineering, 2000, 49, 721-723.	2.8	2
102	All-hexahedral element meshing: Generation of the dual mesh by recurrent subdivision. Computer Methods in Applied Mechanics and Engineering, 2000, 182, 371-378.	6.6	43
103	The DNL absorbing boundary condition: applications to wave problems. Computer Methods in Applied Mechanics and Engineering, 2000, 182, 483-498.	6.6	5
104	A finite point method for incompressible flow problems. Computing and Visualization in Science, 2000, 3, 67-75.	1.2	67
105	A Panel-Fourier Method for Free-Surface Flows. Journal of Fluids Engineering, Transactions of the ASME, 2000, 122, 309-317.	1.5	8
106	Finite element solution of free-surface ship-wave problems. International Journal for Numerical Methods in Engineering, 1999, 45, 503-528.	2.8	22
107	Discrete non-local absorbing boundary condition for exterior problems governed by Helmholtz equation. International Journal for Numerical Methods in Fluids, 1999, 29, 605-621.	1.6	1
108	A discrete non-local (DNL) outgoing boundary condition for diffraction of surface waves. Communications in Numerical Methods in Engineering, 1998, 14, 849-861.	1.3	4

#	Article	IF	CITATIONS
109	Computation of the stabilization parameter for the finite element solution of advective-diffusive problems. , 1997, 25, 1385-1407.		42
110	TRANSVERSE VIBRATIONS OF RECTANGULAR PLATES OF NON-UNIFORM THICKNESS WITH A FREE, CONCENTRIC CIRCULAR HOLE. Journal of Sound and Vibration, 1997, 199, 704-710.	3.9	1
111	PETROV-GALERKIN METHODS FOR THE TRANSIENT ADVECTIVE-DIFFUSIVE EQUATION WITH SHARP GRADIENTS. , 1996, 39, 1455-1473.		29
112	CVBEM Formulation for Multiple Profiles and Cascades. Applied Mechanics Reviews, 1995, 48, S203-S210.	10.1	9
113	Steady state incompressible flows using explicit schemes with an optimal local preconditioning. Computer Methods in Applied Mechanics and Engineering, 1995, 124, 231-252.	6.6	16
114	Introduction to Annual Supplement on Mechanics Pan-America 1995. Applied Mechanics Reviews, 1995, 48, S2-S2.	10.1	0
115	Finite volumes and finite elements: Two â€~good friends'. International Journal for Numerical Methods in Engineering, 1994, 37, 3323-3341.	2.8	90
116	Transient analysis of tube rolling processes by a semi-analytical formulation. International Journal for Numerical Methods in Engineering, 1994, 37, 3621-3632.	2.8	0
117	Numerical methods in phase-change problems. Archives of Computational Methods in Engineering, 1994, 1, 49-74.	10.2	44
118	Transverse vibrations of an isotropic, simply supported rectangular plate with an orthotropic inclusion. Journal of Sound and Vibration, 1992, 153, 217-221.	3.9	11
119	Metal forming analysis by fourier series expansion and further uses of pseudo-concentrations. Computers and Structures, 1992, 44, 435-451.	4.4	4
120	A Petrov-Galerkin technique for the solution of transonic and supersonic flows. Computer Methods in Applied Mechanics and Engineering, 1992, 95, 49-70.	6.6	11
121	A preconditioning mass matrix to accelerate the convergence to the steady Euler solutions using explicit schemes. International Journal for Numerical Methods in Engineering, 1992, 34, 519-541.	2.8	2
122	Improving the convergence rate of the Petrov-Galerkin techniques for the solution of transonic and supersonic flows. International Journal for Numerical Methods in Engineering, 1992, 34, 543-568.	2.8	3
123	Multigrid methods and adaptive refinement techniques in elliptic problems by finite element methods. Computer Methods in Applied Mechanics and Engineering, 1991, 93, 13-30.	6.6	8
124	Upwind parameters for the numerical solution of the compressible flow Euler equations. Advances in Engineering Software and Workstations, 1991, 13, 58-67.	0.2	0
125	On load interaction in the non linear buckling analysis of cylindrical shells. Advances in Engineering Software and Workstations, 1991, 13, 46-50.	0.2	1
126	Free vibrations of rectangular plates of exponentially varying thickness and with a free edge. Journal of Sound and Vibration, 1990, 140, 513-522.	3.9	9

#	Article	IF	CITATIONS
127	Fracture analysis of a surface-coated ceramic by speckle photography and finite elements. Optics and Laser Technology, 1990, 22, 17-22.	4.6	5
128	Upwind techniques via variational principles. International Journal for Numerical Methods in Engineering, 1989, 28, 769-784.	2.8	11
129	An effective automatic incremental/iterative method for static nonlinear structural analysis. Computers and Structures, 1989, 32, 125-135.	4.4	8
130	An efficient tangent scheme for solving phase-change problems. Computer Methods in Applied Mechanics and Engineering, 1988, 66, 65-86.	6.6	12
131	Making curved interfaces straight in phase-change problems. International Journal for Numerical Methods in Engineering, 1987, 24, 375-392.	2.8	27
132	Numerical implementation of a discontinuous finite element algorithm for phase-change problems. Advances in Engineering Software (1978), 1987, 9, 66-73.	0.1	2
133	Evaluation of finite-element calculations in a part-circular crack by coherent optics techniques. Experimental Mechanics, 1987, 27, 154-157.	2.0	4
134	A temperature-based finite element solution for phase-change problems. International Journal for Numerical Methods in Engineering, 1986, 23, 99-119.	2.8	53
135	Solution of non-linear thermal transient problems by a reduction method. International Journal for Numerical Methods in Engineering, 1986, 23, 1023-1042.	2.8	37
136	A simple hidden line algorithm for a structural model of planar elements. Advances in Engineering Software (1978), 1986, 8, 2-7.	0.1	2
137	Failure internal pressure of spherical steel containments. Nuclear Engineering and Design, 1985, 90, 209-222.	1.7	5
138	A reduction method for nonlinear structural dynamic analysis. Computer Methods in Applied Mechanics and Engineering, 1985, 49, 253-279.	6.6	149
139	A load-dependent basis for reduced nonlinear structural dynamics. Computers and Structures, 1985, 20, 203-210.	4.4	79
140	A comparative computational study of blood flow through prosthetic heart valves using the finite element method. Journal of Biomechanics, 1985, 18, 97-115.	2.1	26
141	Reduction methods and explicit time integration technique in structural dynamics. Advances in Engineering Software (1978), 1984, 6, 36-44.	0.1	4
142	Inelastic seismic analysis of a building structure designed by argentine codes. Earthquake Engineering and Structural Dynamics, 1984, 12, 721-736.	4.4	3
143	Pre- and post-degradation analysis of composite materials with different moduli in tension and compression. Computer Methods in Applied Mechanics and Engineering, 1982, 30, 133-149.	6.6	8
144	On the self-stressing modes in free vibration analysis. Journal of Sound and Vibration, 1982, 83, 143-155.	3.9	1

#	Article	IF	CITATIONS
145	On the use of deep, shallow or flat shell finite elements for the analysis of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 1981, 26, 321-330.	6.6	36
146	Computational strategies for the solution of large nonlinear problems via quasi-newton methods. Computers and Structures, 1981, 13, 73-81.	4.4	58
147	Nonlinear structural dynamics via Newton and quasi-Newton methods. Nuclear Engineering and Design, 1980, 58, 339-348.	1.7	15