
Zofia Szweykowska-Kulińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7196704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cap-binding protein complex mediating U snRNA export. Nature, 1995, 376, 709-712.	13.7	320
2	Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiology, 2005, 138, 2155-2164.	2.3	245
3	Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in Plant Science, 2015, 6, 410.	1.7	192
4	ldentification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the \${hbox{ pre-tRNA }}_{left(hbox{ CAA }ight)}^{hbox{ Leu }}\$. Nucleic Acids Research, 2006, 34, 6034-6043.	6.5	162
5	Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65, 6123-6135.	2.4	153
6	Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Research, 2009, 37, 3083-3093.	6.5	130
7	Role of microRNAs and other sRNAs of plants in their changing environments. Journal of Plant Physiology, 2012, 169, 1664-1672.	1.6	126
8	Introns of plant priâ€miRNAs enhance miRNA biogenesis. EMBO Reports, 2013, 14, 622-628.	2.0	115
9	Downâ€regulation of <i><scp>CBP</scp>80</i> gene expression as a strategy to engineer a droughtâ€tolerant potato. Plant Biotechnology Journal, 2013, 11, 459-469.	4.1	114
10	Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Research, 2010, 38, 265-278.	6.5	99
11	The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Research, 2014, 42, 1224-1244.	6.5	94
12	The liverwort <i><scp>P</scp>ellia endiviifolia</i> shares microtranscriptomic traits that are common to green algae and land plants. New Phytologist, 2015, 206, 352-367.	3.5	84
13	mRNA adenosine methylase (MTA) deposits m ⁶ A on pri-miRNAs to modulate miRNA biogenesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21785-21795.	3.3	83
14	Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: A review. Biochimie, 1997, 79, 293-302.	1.3	78
15	Salt Stress Reveals a New Role for ARGONAUTE1 in miRNA Biogenesis at the Transcriptional and Posttranscriptional Levels. Plant Physiology, 2016, 172, 297-312.	2.3	72
16	Posttranscriptional coordination of splicing and <scp>miRNA</scp> biogenesis in plants. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1403.	3.2	72
17	mirEX 2.0 - an integrated environment for expression profiling of plant microRNAs. BMC Plant Biology, 2015, 15, 144.	1.6	68
18	MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. Frontiers in Plant Science, 2017, 8, 18.	1.7	62

#	Article	IF	CITATIONS
19	The human tRNA m ⁵ C methyltransferase Misu is multisite-specific. RNA Biology, 2012, 9, 1331-1338.	1.5	56
20	Determinants of Plant U12-Dependent Intron Splicing Efficiency. Plant Cell, 2004, 16, 1340-1352.	3.1	54
21	Selective recruitment of proteins to 5′ cap complexes during the growth cycle in Arabidopsis. Plant Journal, 2009, 59, 400-412.	2.8	53
22	The Arabidopsis CBP20 targets the capâ€binding complex to the nucleus, and is stabilized by CBP80. Plant Journal, 2009, 59, 814-825.	2.8	51
23	mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Research, 2012, 40, D191-D197.	6.5	50
24	Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene, 2002, 283, 171-183.	1.0	48
25	Mutation in HvCBP20 (Cap Binding Protein 20) Adapts Barley to Drought Stress at Phenotypic and Transcriptomic Levels. Frontiers in Plant Science, 2017, 8, 942.	1.7	48
26	Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Research, 2017, 45, gkw895.	6.5	47
27	R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nature Plants, 2022, 8, 402-418.	4.7	47
28	Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics, 2013, 14, 34.	1.2	43
29	miR393 Is Required for Production of Proper Auxin Signalling Outputs. PLoS ONE, 2014, 9, e95972.	1.1	43
30	STAT activation and differential complex formation dictate selectivity of interferon responses. Acta Biochimica Polonica, 2007, 54, 27-38.	0.3	43
31	High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics, 2013, 14, 801.	1.2	42
32	Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. Frontiers in Plant Science, 2016, 7, 926.	1.7	42
33	Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with <i>Arabidopsis</i> plants. Plant Biotechnology Journal, 2018, 16, 603-614.	4.1	42
34	Divergent strategies displayed by potato (<i>Solanum tuberosum</i> L.) cultivars to cope with soil drought. Journal of Agronomy and Crop Science, 2018, 204, 13-30.	1.7	36
35	Successful extraction of DNA from 100â€yearâ€old herbarium specimens of the liverwort Bazzania trilobata. Taxon, 2005, 54, 335-336.	0.4	34
36	Organellar Inheritance in Liverworts: An Example of Pellia borealis. Journal of Molecular Evolution, 2003, 56, 11-17.	0.8	32

#	Article	IF	CITATIONS
37	Alternative splicing in plants. Biochemical Society Transactions, 2008, 36, 508-510.	1.6	32
38	The Role of the P1BS Element Containing Promoter-Driven Genes in Pi Transport and Homeostasis in Plants. Frontiers in Plant Science, 2012, 3, 58.	1.7	32
39	Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4—in response to ABA and abiotic stresses during seed germination. Plant Molecular Biology, 2013, 81, 189-209.	2.0	32
40	FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Research, 2015, 43, gkv794.	6.5	32
41	SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis. Nucleic Acids Research, 2020, 48, 6839-6854.	6.5	32
42	N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596.	1.0	30
43	The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signaling and Behavior, 2013, 8, e26955.	1.2	29
44	Novel candidate genes AuxRP and Hsp90 influence the chip color of potato tubers. Molecular Breeding, 2015, 35, 224.	1.0	28
45	Regulation of Plant Microprocessor Function in Shaping microRNA Landscape. Frontiers in Plant Science, 2018, 9, 753.	1.7	28
46	Phylogeny of the European species of the genus Pellia (Hepaticae; Metzgeriales) based on the molecular data from nuclear tRNA Leu CAA intergenic sequences. Gene, 2001, 262, 309-315.	1.0	27
47	Regulation of plant gene expression by alternative splicing. Biochemical Society Transactions, 2010, 38, 667-671.	1.6	27
48	tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, e1-e1.	1.5	27
49	Non-Canonical Processing of Arabidopsis pri-miR319a/b/c Generates Additional microRNAs to Target One RAP2.12 mRNA Isoform. Frontiers in Plant Science, 2012, 3, 46.	1.7	26
50	RNA interference and its role in the regulation of eucaryotic gene expression Acta Biochimica Polonica, 2003, 50, 217-229.	0.3	26
51	MicroRNA biogenesis: Epigenetic modifications as another layer of complexity to the microRNA expression regulation. Acta Biochimica Polonica, 2017, 63, 717-723.	0.3	25
52	The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (<i>Hordeum vulgare</i> L.). RNA Biology, 2018, 15, 886-891.	1.5	25
53	Novel Nuclear Functions of Arabidopsis ARGONAUTE1: Beyond RNA Interference. Plant Physiology, 2019, 179, 1030-1039.	2.3	24
54	Plant nonsense suppressor tRNATyrgenes are expressed at very low levesin vitrodue to inefficient splicing of the intron-containing pre-tRNAS. Nucleic Acids Research, 1991, 19, 707-712.	6.5	23

#	Article	IF	CITATIONS
55	Organellar inheritance in the allopolyploid mossRhizomnium pseudopunctatum. Taxon, 2005, 54, 383-388.	0.4	21
56	Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics, 2015, 16, 1009.	1.2	20
57	The brome mosaic virus-based recombination vector triggers a limited gene silencing response depending on the orientation of the inserted sequence. Archives of Virology, 2010, 155, 169-179.	0.9	18
58	MicroRNA-mediated regulation of flower development in grasses. Acta Biochimica Polonica, 2017, 63, 687-692.	0.3	18
59	RAPD technique for taxonomic studies of Pellia epiphylla-complex (Hepaticae, Metzgeriales). Genetica, 1998, 104, 179-187.	0.5	16
60	Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany, 2022, 73, 4528-4545.	2.4	16
61	Identification of transcription factors that bind to the 5′-UTR of the barley PHO2 gene. Plant Molecular Biology, 2020, 102, 73-88.	2.0	15
62	Post-transcriptional Regulation of MicroRNA Accumulation and Function: New Insights fromÂPlants. Molecular Plant, 2018, 11, 1006-1007.	3.9	14
63	Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics, 2021, 22, 165.	1.2	14
64	Nucleotide sequences of two nuclear tRNATyrgenes fromTriticum aestivum. Nucleic Acids Research, 1990, 18, 1894-1894.	6.5	13
65	Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene, 2011, 485, 53-62.	1.0	13
66	A stable tRNA-like molecule is generated from the long noncoding RNA <i>GUT15</i> in <i>Arabidopsis</i> . RNA Biology, 2018, 15, 1-13.	1.5	12
67	Arabidopsis thaliana microRNA162 level is posttranscriptionally regulated via splicing and polyadenylation site selection Acta Biochimica Polonica, 2017, 63, 811-816.	0.3	12
68	Mutations of Arabidopsis thaliana pre-tRNATyr affecting pseudouridylation of U35. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1264, 87-92.	2.4	11
69	miRNA Detection by Stem-Loop RT-qPCR in Studying microRNA Biogenesis and microRNA Responsiveness to Abiotic Stresses. Methods in Molecular Biology, 2019, 1932, 131-150.	0.4	11
70	Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum. Methods in Molecular Biology, 2016, 1398, 271-290.	0.4	11
71	The nuclear cap-binding protein complex is not essential for nonsense-mediated mRNA decay (NMD) in plants Acta Biochimica Polonica, 2008, 55, 825-828.	0.3	11
72	Developmental changes in barley microRNA expression profiles coupled with miRNA targets analysis Acta Biochimica Polonica, 2017, 63, 799-809.	0.3	11

#	Article	IF	CITATIONS
73	Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes, 2019, 10, 210.	1.0	9
74	Barley microRNAs as metabolic sensors for soil nitrogen availability. Plant Science, 2020, 299, 110608.	1.7	9
75	New DNA markers for discrimination between closely-related species and for the reconstruction of historical events; an example using liverworts. Cellular and Molecular Biology Letters, 2002, 7, 403-16.	2.7	9
76	Intergenic sequences of clustered tRNA genes: new type of genetic marker for phylogenetic studies, with application to the taxonomy of liverworts. , 1998, 38, 1257-1261.		8
77	A nuclear tRNA UGASer gene from the wheat Triticum vulgare var. Aria. Gene, 1989, 77, 163-167.	1.0	7
78	A Role of U12 Intron in Proper Pre-mRNA Splicing of Plant Cap Binding Protein 20 Genes. Frontiers in Plant Science, 2018, 9, 475.	1.7	7
79	The nuclear cap-binding protein complex is not essential for nonsense-mediated mRNA decay (NMD) in plants. Acta Biochimica Polonica, 2008, 55, 825-8.	0.3	7
80	Nucleotide sequence of a nuclear tRNATyr gene from Triticum aestivum. Plant Molecular Biology, 1992, 18, 1207-1208.	2.0	5
81	Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production. BMC Plant Biology, 2014, 14, 168.	1.6	5
82	A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes, 2020, 11, 488.	1.0	5
83	Arabidopsis Spliceosome Factor SmD3 Modulates Immunity to Pseudomonas syringae Infection. Frontiers in Plant Science, 2021, 12, 765003.	1.7	5
84	RNAi and viral vectors as useful tools in the functional genomics of plants. Construction of BMV-based vectors for RNA delivery into plant cells. Cellular and Molecular Biology Letters, 2002, 7, 511-22.	2.7	5
85	Pseudouridylation of U35 in the anticodon of Arabidopsis thaliana pre-tRNATyr depends on length rather than structure of an intron. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 137-144.	2.4	4
86	Abscisic acid does not influence the subcellular distribution of the HYL1 protein from Arabidopsis thaliana Acta Biochimica Polonica, 2008, 55, 517-524.	0.3	4
87	Quantitative Analysis of Plant Primary Transcripts. Methods in Molecular Biology, 2021, 2170, 53-77.	0.4	4
88	A comparison of group II introns of plastid tRNALysUUU genes encoding maturase protein. Cellular and Molecular Biology Letters, 2004, 9, 239-51.	2.7	4
89	The Non-Coding RNA Journal Club: Highlights on Recent Papers. Non-coding RNA, 2015, 1, 87-93.	1.3	3
90	The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort Pellia endiviifolia sp. B using an RNA-seq approach. Planta, 2020, 252, 21.	1.6	3

#	Article	IF	CITATIONS
91	Barley primary microRNA expression pattern is affected by soil water availability. Acta Biochimica Polonica, 2017, 63, 817-824.	0.3	3
92	Regulation of Plant microRNA Biogenesis. Concepts and Strategies in Plant Sciences, 2020, , 3-24.	0.6	3
93	MicroRNA biogenesis and activity in plant cell dedifferentiation stimulated by cell wall removal. BMC Plant Biology, 2022, 22, 9.	1.6	3
94	The Old and New RNA World. Acta Societatis Botanicorum Poloniae, 2014, 83, 441-448.	0.8	2
95	A comparative proteomic analysis of the PVY-induced hypersensitive response in leaves of potato (Solanum tuberosum L.) plants that differ in Ny-1 gene dosage. European Journal of Plant Pathology, 2019, 153, 385-396.	0.8	2
96	Specific guanylation of Lupinus luteus 5S rRNA at its 3' end in HeLa cell extract. IUBMB Life, 1996, 39, 1221-1227.	1.5	1
97	Abscisic acid does not influence the subcellular distribution of the HYL1 protein from Arabidopsis thaliana. Acta Biochimica Polonica, 2008, 55, 517-24.	0.3	1
98	The Non-Coding RNA Journal Club: Highlights on Recent Papers—2. Non-coding RNA, 2015, 1, 167-169.	1.3	0