Ping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7196250/publications.pdf

Version: 2024-02-01

1162367 940134 23 246 8 16 citations h-index g-index papers 23 23 23 405 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Construction of 3D CrN@nitrogen-doped carbon nanosheet arrays by reactive magnetron sputtering for the free-standing electrode of supercapacitor. Nanotechnology, 2022, 33, 055402.	1.3	6
2	In-situ Preparation of CdS/TiO ₂ Heterojunction Based on MOFs-Derived TiO ₂ with Improved Photocatalytic Performance. Journal of Physics: Conference Series, 2022, 2168, 012017.	0.3	2
3	Oxygen-vacancy-containing Nb ₂ O ₅ nanorods with modified semiconductor character for boosting selective nitrate-to-ammonia electroreduction. Sustainable Energy and Fuels, 2022, 6, 2062-2066.	2.5	6
4	Ternary photocatalysts based on MOF-derived TiO ₂ co-decorated with ZnIn ₂ S ₄ nanosheets and CdS nanoparticles for effective visible light degradation of organic pollutants. New Journal of Chemistry, 2022, 46, 7195-7201.	1.4	8
5	Enhanced H2 Evolution Performance by Carbonized SiC/g-C3N4 Heterojunction under Visible-light Illumination. Nanotechnology, 2022, , .	1.3	3
6	In ₂ O ₃ microspheres decorated with ZnIn ₂ S ₄ nanosheets as core-shell hybrids for boosting visible-light photodegradation of organic dyes. Materials Research Express, 2021, 8, 025505.	0.8	6
7	In-situ Fabrication of Znln2S4/In2O3 Composites Based on MOFs-Derived In2O3 for Efficient Photodegradation of Methyl Blue. IOP Conference Series: Earth and Environmental Science, 2021, 719, 042045.	0.2	O
8	Fabrication of CdS/ZnS/g-C3N4 Composites for Enhanced Visible-Light Photocatalytic Degradation Performance. IOP Conference Series: Earth and Environmental Science, 2021, 719, 042046.	0.2	1
9	<i>In-situ</i> Construction of 2D/3D Znln ₂ S ₄ /TiO ₂ with Enhanced Photocatalytic Performance. Acta Chimica Sinica, 2021, 79, 1293.	0.5	9
10	Enhanced Photocatalytic Performance of g-C ₃ N ₄ Decorated with MOF-Derived Hollow ZnS Polyhedrons. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012039.	0.3	2
11	Structure Solution of ACV-GLU Cocrystal by Combined XRD Refinement, 1D Solid State NMR and DFT Calculations. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012036.	0.3	О
12	Fabrication and Photocatalytic Performance of CQDs/Co-g-C ₃ N ₄ Heterojunction. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012038.	0.3	1
13	In-situ self-assembly synthesis of 2D/2D CdS/g-C3N4 heterojunction for efficient visible-light photocatalytic performance. Materials Letters, 2020, 268, 127566.	1.3	13
14	Facile in-situ synthesis of 2D/3D g-C ₃ N ₄ /Cu ₂ O heterojunction for high-performance photocatalytic dye degradation. Materials Research Express, 2020, 7, 015524.	0.8	10
15	MOF-derived TiO ₂ modified with g-C ₃ N ₄ nanosheets for enhanced visible-light photocatalytic performance. New Journal of Chemistry, 2020, 44, 6958-6964.	1.4	27
16	Enhanced Visible-Light-Induced Photocatalytic Performance of g-C3N4/ZnS/CuS Ternary Composite for Environmental Remediation. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012129.	0.3	2
17	Construction of ZnO Hollow Spheres Coupled with g-C3N4 as Enhanced Photocatalysts under Simulated Solar Light. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012128.	0.3	1
18	Enhanced Visible-Light Photocatalytic Performance of SAPO-5-Based g-C3N4 Composite for Rhodamine B (RhB) Degradation. Materials, 2019, 12, 3948.	1.3	5

#	Article	IF	CITATIONS
19	An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors. Science China Chemistry, 2016, 59, 679-683.	4.2	13
20	D–A ₁ –D–A ₂ Copolymer Based on Pyridine-Capped Diketopyrrolopyrrole with Fluorinated Benzothiadiazole for High-Performance Ambipolar Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 8620-8626.	4.0	24
21	Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymers via the modification of both conjugated backbone and side chain. Polymer Chemistry, 2015, 6, 5369-5375.	1.9	20
22	Structure determination of the theophylline–nicotinamide cocrystal: a combined powder XRD, 1D solid-state NMR, and theoretical calculation study. CrystEngComm, 2014, 16, 3141-3147.	1.3	49
23	2 : 1 5-Fluorocytosine–acesulfame CAB cocrystal and 1 : 1 5-fluorocytosine–acesulfame s enhanced stability against hydration. CrystEngComm, 2014, 16, 8537-8545.	alt hydrat	e with