Chi-Kung Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719591/publications.pdf Version: 2024-02-01

СньКимс Мі

#	Article	IF	CITATIONS
1	Collision-Induced Dissociation of Cellobiose and Maltose. Journal of Physical Chemistry A, 2022, 126, 1486-1495.	1.1	7
2	Structural Determination of Polysaccharides Lichenin Using Logically Derived Sequence Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 335-346.	1.2	3
3	Unusual free oligosaccharides in human bovine and caprine milk. Scientific Reports, 2022, 12, .	1.6	8
4	Electrospray ionization inâ€source decay of <i>N</i> â€glycans and the effects on <i>N</i> â€glycan structural identification. Rapid Communications in Mass Spectrometry, 2022, 36, .	0.7	6
5	Temperature Dependence of Desorbed Ions and Neutrals and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2021, 32, 95-105.	1.2	8
6	Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconjugate Journal, 2021, 38, 177-189.	1.4	14
7	Toward understanding the ionization mechanism of matrixâ€essisted ionization using mass spectrometry experiment and theory. Rapid Communications in Mass Spectrometry, 2021, 35, e8382.	0.7	13
8	Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination. , 2021, , 309-339.		2
9	Collision-induced dissociation of xylose and its applications in linkage and anomericity identification. Physical Chemistry Chemical Physics, 2021, 23, 3485-3495.	1.3	7
10	Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Communications Chemistry, 2021, 4, .	2.0	22
11	Identification of Anomericity and Linkage of Arabinose and Ribose through Collision-Induced Dissociation. Journal of Physical Chemistry A, 2021, 125, 6109-6121.	1.1	4
12	<i>De novo</i> structural determination of oligosaccharide isomers in glycosphingolipids using logically derived sequence tandem mass spectrometry. Analyst, The, 2021, 146, 7345-7357.	1.7	12
13	Fluorescence quantum yields of matrices used in ultraviolet matrixâ€assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry, 2020, 34, e8846.	0.7	4
14	Toward Closing the Gap between Hexoses and <i>N</i> -Acetlyhexosamines: Experimental and Computational Studies on the Collision-Induced Dissociation of Hexosamines. Journal of Physical Chemistry A, 2019, 123, 6683-6700.	1.1	13
15	Triplet vs πσ* state mediated N–H dissociation of aniline. Journal of Chemical Physics, 2019, 151, 141101.	1.2	9
16	NEXAFS spectra and specific dissociation of oligo-peptide model molecules. AIP Advances, 2019, 9, .	0.6	10
17	Automatic Full Glycan Structural Determination through Logically Derived Sequence Tandem Mass Spectrometry. ChemBioChem, 2019, 20, 2351-2359.	1.3	31
18	Soft Matrix–Assisted Laser Desorption/Ionization for Labile Glycoconjugates. Journal of the American Society for Mass Spectrometry, 2019, 30, 1455-1463.	1.2	12

Сні-Кимс Мі

#	Article	IF	CITATIONS
19	De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 3241-3255.	1.9	18
20	Mass spectrometry-based identification of carbohydrate anomeric configuration to determine the mechanism of glycoside hydrolases. Carbohydrate Research, 2019, 476, 53-59.	1.1	9
21	Unexpected Dissociation Mechanism of Sodiated <i>N</i> -Acetylglucosamine and <i>N</i> -Acetylgalactosamine. Journal of Physical Chemistry A, 2019, 123, 3441-3453.	1.1	23
22	Simple Approach for De Novo Structural Identification of Mannose Trisaccharides. Journal of the American Society for Mass Spectrometry, 2018, 29, 470-480.	1.2	35
23	Simple Method for De Novo Structural Determination of Underivatised Glucose Oligosaccharides. Scientific Reports, 2018, 8, 5562.	1.6	40
24	Excited-state dissociation dynamics of phenol studied by a new time-resolved technique. Journal of Chemical Physics, 2018, 148, 074306.	1.2	13
25	Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI. ChemPhysChem, 2018, 19, 581-589.	1.0	16
26	Excited states dissociation dynamics of indole-x-carboxaldehyde (x = 4, 5, 6, 7): Theoretical and experimental study. Chemical Physics, 2018, 515, 543-549.	0.9	4
27	Vacuum Ultraviolet Single-Photon Postionization of Amino Acids. Applied Sciences (Switzerland), 2018, 8, 699.	1.3	5
28	Collision-induced dissociation of sodiated glucose, galactose, and mannose, and the identification of anomeric configurations. Physical Chemistry Chemical Physics, 2018, 20, 19614-19624.	1.3	30
29	Advantage of spatial map ion imaging in the study of large molecule photodissociation. Journal of Chemical Physics, 2017, 147, 013904.	1.2	10
30	Does lowâ€energy collisionâ€induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end?. Rapid Communications in Mass Spectrometry, 2017, 31, 1835-1844.	0.7	24
31	Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics, 2017, 19, 15454-15462.	1.3	46
32	Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2017, 28, 2235-2245.	1.2	5
33	Comment on: MALDI ionization mechanisms investigated by comparison of isomers of dihydroxybenzoic acid. Journal of Mass Spectrometry, 2016, 51, 459-460.	0.7	2
34	Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group. Chemical Physics Letters, 2016, 660, 60-68.	1.2	7
35	Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization. Journal of the American Society for Mass Spectrometry, 2016, 27, 1491-1498.	1.2	17
36	Theoretical investigation of low detection sensitivity for underivatized carbohydrates in ESI and MALDI. Journal of Mass Spectrometry, 2016, 51, 1180-1186.	0.7	26

Сні-Киng Ni

#	Article	IF	CITATIONS
37	Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chemical Physics Letters, 2015, 636, 146-153.	1.2	22
38	lonization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Annual Review of Analytical Chemistry, 2015, 8, 21-39.	2.8	54
39	Highly Selective Dissociation of a Peptide Bond Following Excitation of Core Electrons. Journal of Physical Chemistry A, 2015, 119, 6195-6202.	1.1	21
40	lon-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2015, 26, 1242-1251.	1.2	36
41	Comment to the Reply on: "Energetics and Kinetics of Thermal Ionization Models of MALDI―by Richard Knochenmuss. J. Am. Soc. Mass Spectrom. 25, 1521–1527 (2014). Journal of the American Society for Mass Spectrometry, 2015, 26, 2169-2170.	1.2	2
42	Comment on: "Energetics and Kinetics of Thermal Ionization Models of MALDI―by Richard Knochenmuss. <i>J. Am. Soc. Mass Spectrom</i> . 25, 1521–1527 (2014). Journal of the American Society for Mass Spectrometry, 2015, 26, 2162-2166.	1.2	7
43	Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms. Journal of Chemical Physics, 2014, 141, 164307.	1.2	13
44	Does decarboxylation make 2,5-dihydroxybenzoic acid special in matrix-assisted laser desorption/ionization?. Rapid Communications in Mass Spectrometry, 2014, 28, 1082-1088.	0.7	10
45	ls energy pooling necessary in ultraviolet matrixâ€assisted laser desorption/ionization?. Rapid Communications in Mass Spectrometry, 2014, 28, 77-82.	0.7	18
46	Core Excitation, Specific Dissociation, and the Effect of the Size of Aromatic Molecules Connected to Oxygen: Phenyl Ether and 1,3-Diphenoxybenzene. Journal of Physical Chemistry A, 2014, 118, 7803-7815.	1.1	9
47	Ion Intensity and Thermal Proton Transfer in Ultraviolet Matrix-Assisted Laser Desorption/Ionization. Journal of Physical Chemistry B, 2014, 118, 4132-4139.	1.2	14
48	Thermal Proton Transfer Reactions in Ultraviolet Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2014, 25, 310-318.	1.2	54
49	Near-Edge X-ray Absorption Fine Structure Spectra and Site-Selective Dissociation of Phenol. Journal of Physical Chemistry A, 2014, 118, 1601-1609.	1.1	22
50	Effects of intramolecular hydrogen bonding on the excited state dynamics of phenol chromophores. Physical Chemistry Chemical Physics, 2013, 15, 7182.	1.3	11
51	MALDI Mechanism of Dihydroxybenzoic Acid Isomers: Desorption of Neutral Matrix and Analyte. Journal of Physical Chemistry B, 2013, 117, 5058-5064.	1.2	25
52	lonâ€toâ€neutral ratio of 2,5â€dihydroxybenzoic acid in matrixâ€assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry, 2013, 27, 955-963.	0.7	34
53	Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging. International Reviews in Physical Chemistry, 2012, 31, 201-233.	0.9	21
54	Photodissociation dynamics of benzyl alcohol at 193 nm. Journal of Chemical Physics, 2012, 137, 064314.	1.2	2

Сні-Киng Ni

#	Article	IF	CITATIONS
55	Photodissociation dynamics of methoxybenzoic acid at 193 nm. Journal of Chemical Physics, 2012, 137, 194309.	1.2	4
56	High Ion Yields of Carbohydrates from Frozen Solution by UV-MALDI. Analytical Chemistry, 2012, 84, 3493-3499.	3.2	18
57	Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene. Physical Chemistry Chemical Physics, 2011, 13, 8313.	1.3	6
58	Alkylation Effects on the Energy Transfer of Highly Vibrationally Excited Naphthalene. Chemistry - an Asian Journal, 2011, 6, 3048-3053.	1.7	2
59	Plume Expansion Dynamics of Matrixâ€Assisted Laser Desorption Ionization. Chemistry - an Asian Journal, 2011, 6, 2986-2991.	1.7	12
60	Photodissociation Dynamics of Benzaldehyde (C ₆ H ₅ CHO) at 266, 248, and 193â€nm. Chemistry - an Asian Journal, 2011, 6, 2961-2976.	1.7	21
61	Photodissociation dynamics of hydroxybenzoic acids. Journal of Chemical Physics, 2011, 134, 034314.	1.2	9
62	Energy transfer of highly vibrationally excited naphthalene: Collisions with CHF3, CF4, and Kr. Journal of Chemical Physics, 2011, 135, 054311.	1.2	8
63	Photodissociation and photoionization of 2,5-dihydroxybenzoic acid at 193 and 355 nm. Journal of Chemical Physics, 2010, 133, 244309.	1.2	8
64	Photodissociation dynamics of tryptophan and the implication of asymmetric photolysis. Journal of Chemical Physics, 2010, 133, 074307.	1.2	11
65	Energy transfer of highly vibrationally excited biphenyl. Journal of Chemical Physics, 2010, 133, 174315.	1.2	7
66	Photostability of amino acids: photodissociation dynamics of phenylalanine chromophores. Physical Chemistry Chemical Physics, 2010, 12, 4989.	1.3	18
67	Photodissociation dynamics of benzoic acid. Journal of Chemical Physics, 2010, 132, 014305.	1.2	11
68	Photodissociation Dynamics of <i>N</i> -Methylindole, <i>N</i> -Methylpyrrole, and Anisole. Journal of Physical Chemistry A, 2009, 113, 3881-3885.	1.1	37
69	Rotationally resolved ultrahigh-resolution laser spectroscopy of the S2 A11â†S A11 transition of azulene Journal of Chemical Physics, 2009, 131, 024303.	· 1.2	9
70	Analysis and fit of the high-resolution spectrum of the Ã1Au–1Ag LIF spectrum of the two-equivalent-top molecule biacetyl. Journal of Molecular Spectroscopy, 2009, 256, 198-203.	0.4	3
71	Photodissociation Dynamics of 2,5-Dihydroxyacetophenone. Journal of Physical Chemistry A, 2009, 113, 97-102.	1.1	7
72	355 nm Multiphoton Dissociation and Ionization of 2, 5-Dihydroxyacetophenone. Journal of Physical Chemistry A, 2009, 113, 14987-14994.	1.1	10

Сні-Кимс Ni

#	Article	IF	CITATIONS
73	Photodissociation dynamics of 1-naphthol. Molecular Physics, 2008, 106, 233-237.	0.8	6
74	Energy transfer of highly vibrationally excited naphthalene. III. Rotational effects. Journal of Chemical Physics, 2008, 128, 164316.	1.2	10
75	Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects. Journal of Chemical Physics, 2008, 128, 124320.	1.2	12
76	Energy transfer of highly vibrationally excited 2-methylnaphthalene: Methylation effects. Journal of Chemical Physics, 2008, 129, 044301.	1.2	9
77	Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence. Journal of Chemical Physics, 2007, 127, 104311.	1.2	15
78	Photostability of amino acids: Internal conversion versus dissociation. Journal of Chemical Physics, 2007, 126, 241104.	1.2	20
79	Photodissociation of S atom containing amino acid chromophores. Journal of Chemical Physics, 2007, 127, 064308.	1.2	7
80	Photodissociation dynamics of nitrobenzene and o-nitrotoluene. Journal of Chemical Physics, 2007, 126, 064310.	1.2	64
81	Photodissociation of 1,3,5-Triazine:  An Ab Initio and RRKM Study. Journal of Physical Chemistry A, 2007, 111, 9591-9599.	1.1	22
82	Photodissociation Dynamics of Phenol. Journal of Physical Chemistry A, 2007, 111, 9463-9470.	1.1	82
83	Photodissociation Dynamics of the Chromophores of the Amino Acid Tyrosine:Âp-Methylphenol,p-Ethylphenol, andp-(2-Aminoethyl)phenolâ€. Journal of Physical Chemistry A, 2007, 111, 6674-6678.	1.1	40
84	Photodissociation Dynamics of Small Aromatic Molecules Studied by Multimass Ion Imaging. Journal of Physical Chemistry B, 2007, 111, 12631-12642.	1.2	44
85	Ab initio and RRKM study of photodissociation of azulene cation. Physical Chemistry Chemical Physics, 2006, 8, 1404.	1.3	44
86	The Role of Sevenâ€Membered Ring in the Photoisomerization and Photodissociation of Small Aromatic Molecules. Journal of the Chinese Chemical Society, 2006, 53, 33-40.	0.8	4
87	Acetylene Elimination in Photodissociation of Neutral Azulene and Its Cation: An Ab Initio and RRKM Study. Journal of the Chinese Chemical Society, 2006, 53, 161-168.	0.8	10
88	Experimental and computational investigation of energy transfer between azulene and krypton. Chemical Physics Letters, 2006, 429, 317-320.	1.2	14
89	Generation and characterization of highly vibrationally excited molecular beam. Journal of Chemical Physics, 2006, 124, 054301.	1.2	10
90	Photodissociation dynamics of pyrimidine. Journal of Chemical Physics, 2006, 124, 084303.	1.2	28

Сні-Кимд Мі

#	Article	IF	CITATIONS
91	Energy transfer of highly vibrationally excited azulene: Collisions between azulene and krypton. Journal of Chemical Physics, 2006, 124, 054302.	1.2	36
92	Photodissociation and photoisomerization of α-fluorotoluene and 4-fluorotoluene in a molecular beam. Journal of Chemical Physics, 2006, 125, 133305.	1.2	3
93	Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon. Journal of Chemical Physics, 2006, 125, 204309.	1.2	11
94	Energy transfer of highly vibrationally excited azulene. II. Photodissociation of azulene-Kr van der Waals clusters at 248 and 266nm. Journal of Chemical Physics, 2006, 124, 134303.	1.2	9
95	Electronic spectra of molecules with two C3v internal rotors: Torsional analysis of the LIF spectrum of biacetyl. Journal of Molecular Spectroscopy, 2005, 233, 122-132.	0.4	5
96	Photodissociation Dynamics of Ethyltoluene andp-Fluoroethylbenzene at 193 and 248 nm. Journal of Physical Chemistry A, 2005, 109, 4995-4999.	1.1	7
97	Supercollisions and energy transfer of highly vibrationally excited molecules. Journal of Chemical Physics, 2005, 123, 131102.	1.2	34
98	Photodissociation dynamics of indole in a molecular beam. Journal of Chemical Physics, 2005, 123, 124303.	1.2	42
99	Time-sliced ion imaging study of I2 and I2+ photolysis at 532 nm. Physical Chemistry Chemical Physics, 2005, 7, 2151.	1.3	14
100	Photodissociation of Azulene at 193 nm:Â Ab Initio and RRKM Study. Journal of Physical Chemistry A, 2005, 109, 8774-8784.	1.1	27
101	Photodissociation Dynamics of C6HxF6-x(x= 1â^'4) at 193 nmâ€. Journal of Physical Chemistry B, 2005, 109, 8344-8349.	1.2	6
102	Photodissociation dynamics of pyridine. Journal of Chemical Physics, 2005, 123, 054309.	1.2	38
103	Carbon–carbon bond cleavage in the photoionization of ethanol and 1-propanol clusters. Journal of Chemical Physics, 2004, 120, 8979-8984.	1.2	25
104	H atom elimination from the πσâ^— state in the photodissociation of phenol. Journal of Chemical Physics, 2004, 121, 2459.	1.2	114
105	Photodissociation of Nitrosobenzene and Decomposition of Phenyl Radicalâ€. Journal of Physical Chemistry A, 2004, 108, 7928-7935.	1.1	20
106	Photoisomerization and Photodissociation of Aniline and 4-Methylpyridine. Journal of the American Chemical Society, 2004, 126, 8760-8768.	6.6	40
107	Photodissociation of simple aromatic molecules in a molecular beam. International Reviews in Physical Chemistry, 2004, 23, 187-218.	0.9	36
108	Photodissociation Dynamics of Fluorobenzene. Journal of the American Chemical Society, 2003, 125, 9814-9820.	6.6	27

Сні-Кимд Мі

#	Article	IF	CITATIONS
109	Photoisomerization and Photodissociation of m-Xylene in a Molecular Beam. Journal of Physical Chemistry A, 2003, 107, 4019-4024.	1.1	18
110	H and CH3 eliminations in the photodissociation of chlorotoluene. Journal of Chemical Physics, 2003, 119, 7701-7704.	1.2	14
111	Photodissociation dynamics of azulene. Journal of Chemical Physics, 2003, 119, 2032-2036.	1.2	15
112	Experimental and Theoretical Studies of Quantum Beats in Fluorescence. Journal of the Chinese Chemical Society, 2003, 50, 631-639.	0.8	2
113	Rotationally resolved spectra of transitions involving methyl torsion and C–C–O bend of acetaldehyde in the system of Ã1A″–X̃1A′. Journal of Chemical Physics, 2002, 116, 1003-1011.	1.2	5
114	Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam. Journal of Chemical Physics, 2002, 117, 7034-7040.	1.2	33
115	Photodissociation of ethylbenzene at 248 nm. Journal of Chemical Physics, 2002, 116, 7779-7782.	1.2	25
116	Rotationally resolved laser-induced fluorescence of biacetyl in A 1Au–X 1Ag. Journal of Chemical Physics, 2002, 117, 5165-5173.	1.2	8
117	3smd1Dto3png1Fautoionization resonances of Mg. Physical Review A, 2002, 65, .	1.0	4
118	Experimental and theoretical studies of the effects of collisions and magnetic fields on quantum beat. Molecular Physics, 2002, 100, 1117-1128.	0.8	4
119	Photoisomerization and Photodissociation of Toluene in Molecular Beam. Journal of the American Chemical Society, 2002, 124, 4068-4075.	6.6	41
120	Rotationally resolved structures in the fifth and sixth torsional states of Ã 1A″ acetaldehyde: Internal rotation above the torsional barrier. Journal of Chemical Physics, 2002, 117, 7906-7913.	1.2	2
121	Review: Photodissociation and Photoisomerization of Small Aromatic Molecules in a Molecular Beam. Australian Journal of Chemistry, 2001, 54, 561.	0.5	8
122	Rotationally resolved spectra of transitions involving motion of the methyl group of acetaldehyde in the system Ãf 1A″â~'XÌf 1A′. Journal of Chemical Physics, 2001, 115, 5089-5100.	1.2	7
123	Ring opening dissociation of d6-benzene. Journal of Chemical Physics, 2001, 115, 2449-2455.	1.2	37
124	Multimass ion imaging detection: Application to photodissociation. Review of Scientific Instruments, 2001, 72, 1963-1969.	0.6	64
125	Spectra of jet-cooled 32SO2 and 34SO2 in systems ã 3B1 and b̃ 3A2–X̃ 1A1: Rotational structure perturbed b̃ 3A2. Journal of Chemical Physics, 2001, 114, 1187-1193.	e of 1.2	12
126	High-Resolution Spectroscopy of Jet-Cooled 32SO2 and 34SO2: The ã3B1–X1A1, 210 and 110 Bands. Journal of Molecular Spectroscopy, 2000, 203, 151-157.	0.4	7

Сні-Кимс Ni

#	Article	IF	CITATIONS
127	Pulsed amplification of cw dye laser with undetectable amplified spontaneous emission. Review of Scientific Instruments, 2000, 71, 3309-3312.	0.6	10
128	State-resolved dissociation dynamics of triplet acetaldehyde near the dissociation threshold to form CH3+HCO. Journal of Chemical Physics, 2000, 112, 1797-1803.	1.2	18
129	Dissociation rate of hot benzene. Journal of Chemical Physics, 2000, 113, 67-70.	1.2	73
130	Photodissociation of Benzotrifluoride at 193 nmâ€. Journal of Physical Chemistry A, 2000, 104, 10125-10130.	1.1	9
131	State-Resolved Dynamics of Dissociation of Triplet Acetaldehyde:Â Rate of Appearance of Fragment HCO and Decay of Excited States of Parent Moleculeâ€. Journal of Physical Chemistry A, 2000, 104, 10362-10367.	1.1	11
132	Photoionization of methanol dimer using a tunable vacuum ultraviolet laser. Journal of Chemical Physics, 1999, 111, 3434-3440.	1.2	27
133	Photodissociation of propyne and allene at 193 nm with vacuum ultraviolet detection of the products. Journal of Chemical Physics, 1999, 110, 3320-3325.	1.2	39
134	Ionization and Emission Spectra of the Photofragments of Allene Excited at 193 nm. Journal of Physical Chemistry A, 1999, 103, 6063-6073.	1.1	4
135	Amplified spontaneous emission reduction by use of stimulated Brillouin scattering: 2-ns pulses from a Ti:Al_2O_3 amplifier chain. Applied Optics, 1998, 37, 530.	2.1	23
136	Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation. Optics Letters, 1996, 21, 1673.	1.7	38
137	Infrared Spectroscopy of Ketene by Two-Step Photodissociation. Journal of Molecular Spectroscopy, 1996, 177, 285-293.	0.4	15
138	Experimental and theoretical velocity profiles for pure rotational scattering in carbon dioxide-hot hydrogen atom collisions. The Journal of Physical Chemistry, 1995, 99, 7381-7387.	2.9	3
139	Experimental and theoretical velocity profiles for pure rotational scattering: CO–hot hydrogen atom collisions. Journal of Chemical Physics, 1994, 101, 9499-9505.	1.2	8
140	State and velocity distributions of Cl atoms produced in the photodissociation of ICI at 237 nm. Chemical Physics Letters, 1993, 210, 333-339.	1.2	11
141	Correlation between molecular recoil and molecular orientation in collisions of symmetric top molecules with hot hydrogen atoms. Chemical Physics Letters, 1992, 193, 69-76.	1.2	1
142	Recognition of the violet system of S2Cl in the pyrolysis of S2Cl2. Journal of Chemical Physics, 1986, 85, 10-12.	1.2	13
143	Differentiation of aldohexoses and ketohexoses through collisionâ€induced dissociation. Journal of the Chinese Chemical Society, 0, , .	0.8	2