Brooke E Harcourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7194989/publications.pdf

Version: 2024-02-01

29 papers 1,651 citations

18 h-index 28 g-index

31 all docs

 $\begin{array}{c} 31 \\ \text{docs citations} \end{array}$

31 times ranked

2752 citing authors

#	Article	IF	CITATIONS
1	RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 742-752.	3.0	391
2	Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 2014, 20, 1417-1426.	15.2	208
3	Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clinical Science, 2016, 130, 711-720.	1.8	114
4	Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radical Biology and Medicine, 2012, 52, 716-723.	1.3	112
5	Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E323-E330.	1.8	105
6	Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2010, 298, F763-F770.	1.3	105
7	Targeted reduction of advanced glycation improves renal function in obesity. Kidney International, 2011, 80, 190-198.	2.6	102
8	Processed foods drive intestinal barrier permeability and microvascular diseases. Science Advances, 2021, 7, .	4.7	80
9	Coming full circle in diabetes mellitus: from complications to initiation. Nature Reviews Endocrinology, 2013, 9, 113-123.	4.3	66
10	Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis. Diabetes, 2016, 65, 1085-1098.	0.3	47
11	Targeting the <scp>AGEâ€RAGE</scp> axis improves renal function in the context of a healthy diet low in advanced glycation endâ€product content. Nephrology, 2013, 18, 47-56.	0.7	30
12	A New Perspective on Therapeutic Inhibition of Advanced Glycation in Diabetic Microvascular Complications: Common Downstream Endpoints Achieved Through Disparate Therapeutic Approaches?. American Journal of Nephrology, 2009, 30, 323-335.	1.4	29
13	Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetology and Metabolic Syndrome, 2014, 6, 86.	1.2	29
14	Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia, 2014, 57, 1977-1985.	2.9	26
15	A rapid extraction method for glycogen from formalin-fixed liver. Carbohydrate Polymers, 2015, 118, 9-15.	5.1	26
16	Evidence for Protein Leverage in Children and Adolescents with Obesity. Obesity, 2020, 28, 822-829.	1.5	26
17	RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor- \hat{l}^2 and Increasing Resistance to Apoptosis. Diabetes, 2018, 67, 960-973.	0.3	23
18	Sex and puberty-related differences in metabolomic profiles associated with adiposity measures in youth with obesity. Metabolomics, 2019, 15, 75.	1.4	21

#	Article	IF	CITATIONS
19	Impairment of Liver Glycogen Storage in the db/db Animal Model of Type 2 Diabetes: A Potential Target for Future Therapeutics?. Current Drug Targets, 2015, 16, 1088-1093.	1.0	21
20	Serum IGFBPâ€2 levels are associated with reduced insulin sensitivity in obese children. Clinical Obesity, 2018, 8, 184-190.	1.1	18
21	Neighbourhood socioeconomic circumstances, adiposity and cardiometabolic risk measures in children with severe obesity. Obesity Research and Clinical Practice, 2019, 13, 345-351.	0.8	17
22	Modulation of the Cellular Expression of Circulating Advanced Glycation End-Product Receptors in Type 2 Diabetic Nephropathy. Experimental Diabetes Research, 2010, 2010, 1-9.	3.8	14
23	Time spent watching television impacts on body mass index in youth with obesity, but only in those with shortest sleep duration. Journal of Paediatrics and Child Health, 2020, 56, 721-726.	0.4	11
24	Maternal inheritance of BDNF deletion, with phenotype of obesity and developmental delay in mother and child. American Journal of Medical Genetics, Part A, 2018, 176, 194-200.	0.7	8
25	Obesityâ€induced renal impairment is exacerbated in interleukinâ€6â€knockout mice. Nephrology, 2012, 17, 257-262.	0.7	7
26	Psychosocial measures and weight change in a clinical paediatric population with obesity. Quality of Life Research, 2019, 28, 1555-1564.	1.5	7
27	Modest decrease in severity of obesity in adolescence associates with low arterial stiffness. Atherosclerosis, 2021, 335, 23-30.	0.4	4
28	Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites, 2021, 11, 426.	1.3	2
29	Decreasing severity of obesity from early to late adolescence and young adulthood associates with longitudinal metabolomic changes implicated in lower cardiometabolic disease risk. International Journal of Obesity, 2022, 46, 646-654.	1.6	2