Megumi Kawasaki

List of Publications by Citations

Source: https://exaly.com/author-pdf/7194706/megumi-kawasaki-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

L-index

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 209
 5,845
 45
 66

 papers
 citations
 h-index
 g-index

 218
 6,534
 3.8
 6.3

218 6,534 3.8 ext. papers ext. citations avg, IF

#	Paper	IF	Citations
209	Microstructural evolution in high purity aluminum processed by ECAP. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 524, 143-150	5.3	193
208	Principles of superplasticity in ultrafine-grained materials. <i>Journal of Materials Science</i> , 2007 , 42, 1782-7	17496	193
207	Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 676, 294-303	5.3	167
206	An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. <i>Acta Materialia</i> , 2011 , 59, 308-316	8.4	164
205	The significance of strain reversals during processing by high-pressure torsion. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 498, 341-348	5.3	144
204	Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2014 , 49, 18-34	4.3	128
203	Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. <i>Acta Materialia</i> , 2016 , 109, 314-322	8.4	122
202	Microstructural evolution in a two-phase alloy processed by high-pressure torsion. <i>Acta Materialia</i> , 2010 , 58, 919-930	8.4	122
201	A comparison of microstructures and mechanical properties in a Cullr alloy processed using different SPD techniques. <i>Journal of Materials Science</i> , 2013 , 48, 4653-4660	4.3	98
200	Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. <i>Acta Materialia</i> , 2011 , 59, 3903-3914	8.4	92
199	Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. <i>Journal of Materials Research</i> , 2015 , 30, 2804-2815	2.5	87
198	An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8306-8312	6.7	81
197	Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 705, 411-419	5.3	80
196	Grain Boundary Phenomena in an Ultrafine-Grained All Alloy with Improved Mechanical Behavior for Micro-Devices. <i>Advanced Engineering Materials</i> , 2014 , 16, 1000-1009	3.5	80
195	Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. <i>Journal of Materials Science</i> , 2016 , 51, 19-32	4.3	75
194	The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2011 , 529, 345-351	5.3	74
193	Significance of strain reversals in a two-phase alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 7008-7016	5.3	74

(2012-2017)

192	Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion. <i>Journal of Alloys and Compounds</i> , 2017 , 711, 143-154	5.7	73	
191	Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. <i>Journal of Materials Science</i> , 2016 , 51, 7-18	4.3	72	
190	Strain rate sensitivity studies in an ultrafine-grained AlBOwt.% Zn alloy using micro- and nanoindentation. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 543, 117-120	5.3	71	
189	Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 685, 342-348	5.3	67	
188	Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2012 , 47, 7789-7795	4.3	67	
187	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. <i>Acta Materialia</i> , 2014 , 63, 16-29	8.4	66	
186	Developing superplasticity and a deformation mechanism map for the ZnAl eutectoid alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 6140-6145	5.3	65	
185	Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. <i>Acta Materialia</i> , 2012 , 60, 253-260	8.4	61	
184	Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion. Journal of Materials Science, 2010 , 45, 4545-4553	4.3	60	
183	Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. <i>Materials Science & Microstructure and Processing</i> , 2015 , 630, 90-98	5.3	59	
182	Microstructures, strengthening mechanisms and fracture behavior of CuAg alloys processed by high-pressure torsion. <i>Acta Materialia</i> , 2012 , 60, 269-281	8.4	59	
181	Microstructural evolution and mechanical properties of a Cu I r alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 7715-7722	5.3	58	
180	Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion. <i>Journal of Materials Science</i> , 2010 , 45, 4583-4593	4.3	58	
179	Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. <i>Materials Science & Materials amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 635, 109-117	5.3	56	
178	Microstructures and textures of a CuNiBi alloy processed by high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2013 , 574, 361-367	5.7	56	
177	Achieving homogeneity in a Cullr alloy processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2012 , 47, 7782-7788	4.3	56	
176	Using high-pressure torsion to process an aluminum magnesium nanocomposite through diffusion bonding. <i>Journal of Materials Research</i> , 2016 , 31, 88-99	2.5	56	
175	Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. <i>Journal of Materials Science</i> , 2012 , 47, 7870-7876	4.3	55	

174	Interpretation of hardness evolution in metals processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2014 , 49, 6586-6596	4.3	54
173	Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. <i>Scripta Materialia</i> , 2015 , 94, 44-47	5.6	52
172	Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2017 , 684, 318-327	5.3	51
171	Review: achieving superplasticity in metals processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2014 , 49, 6487-6496	4.3	51
170	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. <i>Scripta Materialia</i> , 2015 , 100, 98-101	5.6	51
169	Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in ZnI22% Al during high-pressure torsion. <i>Scripta Materialia</i> , 2014 , 75, 102-105	5.6	49
168	Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. <i>Acta Materialia</i> , 2017 , 140, 443-451	8.4	48
167	Microstructural evolution and mechanical properties in a ZnAl eutectoid alloy processed by high-pressure torsion. <i>Acta Materialia</i> , 2014 , 72, 67-79	8.4	47
166	Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2016 , 686, 998-1007	5.7	46
165	Twenty-five years of severe plastic deformation: recent developments in evaluating the degree of homogeneity through the thickness of disks processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2012 , 47, 7719-7725	4.3	45
164	Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 6624-662	<u>.</u> §∙3	45
163	Influence of high-pressure torsion on microstructural evolution in an Al¤nMg©u alloy. <i>Journal of Materials Science</i> , 2010 , 45, 4621-4630	4.3	45
162	Effect of aging on microstructural development in an AlMgBi alloy processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2012 , 47, 7815-7820	4.3	44
161	Grain Boundary Sliding in a Superplastic Zinc-Aluminum Alloy Processed Using Severe Plastic Deformation. <i>Materials Transactions</i> , 2008 , 49, 84-89	1.3	44
160	Flow and cavitation in a quasi-superplastic two-phase magnesium[]thium alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 429, 334-340	5.3	44
159	Microstructural evolution in two-phase alloys processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2013 , 48, 4582-4591	4.3	41
158	Laser compression of nanocrystalline tantalum. Acta Materialia, 2013, 61, 7767-7780	8.4	41
157	Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing. <i>Acta Materialia</i> , 2008 , 56, 2307-2317	8.4	40

156	Constructing a deformation mechanism map for a superplastic PbBn alloy processed by equal-channel angular pressing. <i>Scripta Materialia</i> , 2009 , 61, 963-966	5.6	39	
155	An examination of microstructural evolution in a CuNiBi alloy processed by HPT and ECAP. <i>Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 576, 149-155	5.3	38	
154	Processing a twinning-induced plasticity steel by high-pressure torsion. <i>Scripta Materialia</i> , 2012 , 67, 64	9- 6. 52	38	
153	An investigation of cavity growth in a superplastic aluminum alloy processed by ECAP. <i>Acta Materialia</i> , 2005 , 53, 5353-5364	8.4	38	
152	Development of hardness homogeneity and superplastic behavior in an aluminumflopper eutectic alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2013 , 561, 118-125	5.3	36	
151	The development of hardness homogeneity in a Cullr alloy processed by equal-channel angular pressing. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 556, 526-532	5.3	35	
150	An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed CuNiBi alloy. <i>Materials Science & Discourse and Processing</i> , 2014 , 597, 288-294	5.3	33	
149	Nano- and Micro-Mechanical Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600578	3.5	33	
148	Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 16971-16976	6.7	32	
147	Influence of Anvil Alignment on Shearing Patterns in High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2013 , 15, 747-755	3.5	32	
146	Achieving superplastic behavior in fcc and hcp metals processed by equal-channel angular pressing. <i>Materials Science & Microstructure and Processing</i> , 2008 , 493, 104-110	5.3	32	
145	The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. <i>Journal of Materials Science</i> , 2015 , 50, 3549-3561	4.3	31	
144	Activation energy for plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A high temperature nanoindentation study. <i>Scripta Materialia</i> , 2018 , 156, 129-133	5.6	31	
143	Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn. <i>Materials Characterization</i> , 2019 , 154, 304-314	3.9	30	
142	Achieving superplastic properties in a PbBn eutectic alloy processed by equal-channel angular pressing. <i>Journal of Materials Science</i> , 2011 , 46, 155-160	4.3	30	
141	Micro-Mechanical Behavior of an Exceptionally Strong Metal Matrix Nanocomposite Processed by High-Pressure Torsion . <i>Advanced Engineering Materials</i> , 2016 , 18, 1001-1008	3.5	30	
140	Evolution of microstructure and mechanical properties in a hypoeutectic AlBiMg alloy processed by accumulative back extrusion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2016 , 651, 269-279	5.3	29	
139	Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. <i>Journal of Materials Research</i> , 2018 , 33, 2700-2710	2.5	29	

138	A quantitative study of cavity development in the tensile testing of an aluminum metal matrix composite processed by equal-channel angular pressing. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2005 , 410-411, 402-407	5.3	29
137	Microstructural evolution and intermetallic formation in Zn-Mg hybrids processed by High-Pressure Torsion. <i>Philosophical Magazine</i> , 2019 , 99, 557-584	1.6	29
136	De-twinning via secondary twinning in face-centered cubic alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 578, 110-114	5.3	28
135	An investigation of flow patterns and hardness distributions using different anvil alignments in high-pressure torsion. <i>Journal of Materials Science</i> , 2013 , 48, 4533-4542	4.3	28
134	Superplasticity in a lean Fe-Mn-Al steel. <i>Nature Communications</i> , 2017 , 8, 751	17.4	27
133	Bulk-State Reactions and Improving the Mechanical Properties of Metals through High-Pressure Torsion. <i>Materials Transactions</i> , 2019 , 60, 1131-1138	1.3	26
132	Direct Bonding of Aluminum Topper Metals through High-Pressure Torsion Processing. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800642	3.5	26
131	A critical examination of the paradox of strength and ductility in ultrafine-grained metals. <i>Journal of Materials Research</i> , 2014 , 29, 2534-2546	2.5	26
130	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. <i>Materials Research Letters</i> , 2022 , 10, 163-256	7.4	26
129	Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion. <i>Journal of Materials Research and Technology</i> , 2015 , 4, 18-25	5.5	25
128	Developing Superplastic Ductilities in Ultrafine-Grained Metals. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 1891-1898	2.3	25
127	Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites. <i>Applied Physics Letters</i> , 2015 , 107, 011901	3.4	23
126	Evolution of hardness in ultrafine-grained metals processed by high-pressure torsion. <i>Journal of Materials Research and Technology</i> , 2014 , 3, 311-318	5.5	23
125	The significance of grain boundary sliding in the superplastic Zn🛭 2 % Al alloy processed by ECAP. <i>Journal of Materials Science</i> , 2013 , 48, 4730-4741	4.3	23
124	Microstructure and texture evolution in a CuNiBi alloy processed by equal-channel angular pressing. <i>Journal of Alloys and Compounds</i> , 2015 , 638, 88-94	5.7	23
123	Applied stress controls the production of nano-twins in coarse-grained metals. <i>Applied Physics Letters</i> , 2012 , 101, 231903	3.4	23
122	Nano-graining a particle-strengthened high-entropy alloy. <i>Scripta Materialia</i> , 2019 , 163, 24-28	5.6	23
121	Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. <i>Materials Science & Discretive and Processing</i> 2018, 714, 84-92	5.3	22

120	An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 595, 179-187	5.3	22	
119	Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2019 , 788, 318-328	5.7	22	
118	Significance of grain refinement on micro-mechanical properties and structures of additively-manufactured CoCrFeNi high-entropy alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 807, 140898	5.3	21	
117	Superplasticity in Ultrafine-Grained Materials Reviews on Advanced Materials Science, 2018, 54, 46-55	4.8	21	
116	Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22%Al alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 645, 47-56	5.3	20	
115	Formation of epsilon martensite by high-pressure torsion in a TRIP steel. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 625, 114-118	5.3	20	
114	Evolution of microhardness and microstructure in a cast Ala % Si alloy during high-pressure torsion. <i>Journal of Materials Science</i> , 2013 , 48, 4671-4680	4.3	20	
113	The effect of impurity level on ultrafine-grained microstructures and their stability in low stacking fault energy silver. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 8694-8699	5.3	20	
112	Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg. <i>Scientific Reports</i> , 2019 , 9, 17186	4.9	20	
111	An evaluation of creep behavior in ultrafine-grained aluminum alloys processed by ECAP. <i>Journal of Materials Science</i> , 2010 , 45, 271-274	4.3	19	
110	Effect of post-deformation annealing on the microstructure and micro-mechanical behavior of ZnMg hybrids processed by High-Pressure Torsion. <i>Materials Science & Discourse And Processing</i> , 2020, 771, 138578	5.3	19	
109	Micro-Mechanical Response of an Al-Mg Hybrid System Synthesized by High-Pressure Torsion. <i>Materials</i> , 2017 , 10,	3.5	18	
108	Flow behavior of a superplastic ZnI2% Al alloy processed by equal-channel angular pressing. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 48-51	5.3	18	
107	An Evaluation of Homogeneity and Heterogeneity in Metals Processed by High-Pressure Torsion. <i>Acta Physica Polonica A</i> , 2012 , 122, 425-429	0.6	18	
106	The Requirements for Superplasticity with an Emphasis on Magnesium Alloys. <i>Advanced Engineering Materials</i> , 2016 , 18, 127-131	3.5	18	
105	An evaluation of the shearing patterns introduced by different anvil alignments in high-pressure torsion. <i>Journal of Materials Science</i> , 2014 , 49, 3146-3157	4.3	17	
104	Mechanical properties and microstructure evolution in an aluminum 6082 alloy processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2014 , 49, 6597-6607	4.3	17	
103	Microstructure of low stacking fault energy silver processed by different routes of severe plastic deformation. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S190-S193	5.7	17	

102	Synthesis of Hybrid Nanocrystalline Alloys by Mechanical Bonding through High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2020 , 22, 1901289	3.5	17
101	Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. <i>Journal of Materials Science</i> , 2013 , 48, 4637-4645	4.3	16
100	An Investigation of Cavity Development during Superplastic Flow in a Zinc–Aluminum Alloy Processed Using Severe Plastic Deformation. <i>Materials Transactions</i> , 2012 , 53, 87-95	1.3	16
99	Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion. <i>Materials Science & Microstructure and Processing</i> , 2016 , 666, 350-359	5.3	16
98	Using Severe Plastic Deformation to Fabricate Strong Metal Matrix Composites. <i>Materials Research</i> , 2017 , 20, 46-52	1.5	15
97	The development of internal cavitation in a superplastic zinclluminum alloy processed by ECAP. <i>Journal of Materials Science</i> , 2008 , 43, 7360-7365	4.3	15
96	On the Heterogeneity of Local Shear Strain Induced by High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2020 , 22, 1900477	3.5	15
95	High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing. <i>Journal of Materials Science</i> , 2013 , 48, 1675-1684	4.3	14
94	The many facets of deformation mechanism mapping and the application to nanostructured materials. <i>Journal of Materials Research</i> , 2013 , 28, 1827-1834	2.5	14
93	An examination of the saturation microstructures achieved in ultrafine-grained metals processed by high-pressure torsion. <i>Journal of Materials Research and Technology</i> , 2014 , 3, 319-326	5.5	13
92	An examination of the superplastic characteristics of AlMgBc alloys after processing. <i>Journal of Materials Research</i> , 2017 , 32, 4541-4553	2.5	12
91	Effects of Pre-Strain on the Aging Behavior of Al 7075 Alloy for Hot-Stamping Capability. <i>Metals</i> , 2018 , 8, 137	2.3	11
90	Mechanical properties and structural stability of a bulk nanostructured metastable aluminum-magnesium system. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 796, 140050	5.3	11
89	High temperature superplasticity and deformation behavior of naturally aged Zn-Al alloys with different phase compositions. <i>Materials Science & Descriptions A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 730, 73-83	5.3	11
88	Towards the ultimate strength of iron: spalling through laser shock. <i>Acta Materialia</i> , 2021 , 215, 117072	8.4	11
87	The Contribution of Severe Plastic Deformation to Research on Superplasticity. <i>Materials Transactions</i> , 2019 , 60, 1123-1130	1.3	10
86	Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 782, 139281	5.3	10
85	High-pressure torsion processing of ZnBMg alloy and its hybrid counterpart: A comparative study. Journal of Alloys and Compounds, 2020, 831, 154891	5.7	9

84	Effect of anvil roughness on the flow patterns and hardness development in high-pressure torsion. Journal of Materials Science, 2014 , 49, 6517-6528	4.3	9
83	High-cycle fatigue behavior of Zn🛘2% Al alloy processed by high-pressure torsion. <i>Materials Science & A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 618, 37-40	5.3	9
82	Martensitic Phase Transformation and Deformation Behavior of FeMntal Twinning-Induced Plasticity Steel during High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2014 , 16, 927-932	3.5	9
81	Developing Superplasticity in Ultrafine-Grained Metals. <i>Acta Physica Polonica A</i> , 2015 , 128, 470-478	0.6	9
80	Creep behavior of metals processed by equal-channel angular pressing. <i>Metallic Materials</i> , 2021 , 49, 75-	8 133	9
79	Thermal stability of a nanocrystalline HfNbTiZr multi-principal element alloy processed by high-pressure torsion. <i>Materials Characterization</i> , 2020 , 168, 110550	3.9	9
78	Mechanical Bonding of Aluminum Hybrid Alloy Systems through High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2020 , 22, 1900483	3.5	9
77	Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing. <i>Materials Characterization</i> , 2016 , 112, 105-112	3.9	8
76	The significance of self-annealing in two-phase alloys processed by high-pressure torsion. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 63, 012126	0.4	8
75	Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. <i>Journal of Materials Science</i> , 2012 , 47, 7726-7734	4.3	8
74	Processing of Ultrafine-Grained Materials through the Application of Severe Plastic Deformation. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 3035-304	.52.3	8
73	Consolidation of magnesium and magnesium-quasicrystal composites through high-pressure torsion. <i>Letters on Materials</i> , 2019 , 9, 546-550	0.9	8
72	Fatigue behavior of additive manufactured CrFeCoNi medium-entropy alloy. <i>Journal of Alloys and Compounds</i> , 2021 , 863, 158609	5.7	8
71	Effect of Equal-Channel Angular Pressing on the Creep Resistance of Precipitation-Strengthened Alloys. <i>Materials Science Forum</i> , 2010 , 667-669, 897-902	0.4	7
70	Characteristics of High Temperature Creep in Pure Aluminum Processed by Equal-Channel Angular Pressing. <i>Materials Science Forum</i> , 2010 , 638-642, 1965-1970	0.4	7
69	The high-temperature creep properties of materials processed using severe plastic deformation. <i>International Journal of Materials Research</i> , 2009 , 100, 750-756	0.5	7
68	An examination of microstructural evolution and homogeneity in a magnesium AZ80 alloy processed by high-pressure torsion. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2021 , 806, 140832	5.3	7
67	Phase transformation and structure evolution of a Ti-45Al-7.5Nb alloy processed by high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2019 , 787, 1149-1157	5.7	7

66	Mechanical mixing of Mg and Zn using high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2021 , 869, 159302	5.7	7
65	Effect of Severe Plastic Deformation and Subsequent Silicon Spheroidizing Treatment on the Microstructure and Mechanical Properties of an AlBiMg Alloy . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700064	3.5	6
64	The influence of chemical heterogeneities on the local mechanical behavior of a high-entropy alloy: A micropillar compression study. <i>Materials Science & Dispersing A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 721, 165-167	5.3	6
63	An overview of flow patterns development on disc lower surfaces when processing by high-pressure torsion. <i>Journal of Materials Research and Technology</i> , 2014 , 3, 303-310	5.5	6
62	An investigation of the stored energy and thermal stability in a CuNiBi alloy processed by high-pressure torsion. <i>Philosophical Magazine</i> , 2020 , 100, 688-712	1.6	6
61	Epitaxial Thin Films of a Chalcogenide Perovskite. <i>Chemistry of Materials</i> , 2021 , 33, 7457-7464	9.6	6
60	Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2015 , 82, 012076	0.4	5
59	Achieving room-temperature superplasticity in an ultrafine-grained Zn-22% Al alloy. <i>Letters on Materials</i> , 2015 , 5, 269-275	0.9	5
58	The potential for achieving superplasticity in high-entropy alloys processed by severe plastic deformation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 194, 012040	0.4	4
57	Fabrication of hybrid metal systems through the application of high-pressure torsion. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 194, 012002	0.4	4
56	Producing ultrafine-grained materials through severe plastic deformation. <i>Emerging Materials Research</i> , 2014 , 3, 252-260	1.4	4
55	The Influence of Impurity Content on Thermal Stability of Low Stacking Fault Energy Silver Processed by Severe Plastic Deformation. <i>Materials Science Forum</i> , 2012 , 729, 222-227	0.4	4
54	Effect of High-Pressure Torsion on Hardness and Electrical Resistivity of Commercially Pure Cu. <i>Advanced Engineering Materials</i> , 2020 , 22, 1900547	3.5	4
53	Microstructure evolution in a nanocrystalline CoCrFeNi multi-principal element alloy during annealing. <i>Materials Characterization</i> , 2021 , 171, 110807	3.9	4
52	High-Pressure Torsion of Ti: Synchrotron characterization of phase volume fraction and domain sizes. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 63, 012147	0.4	3
51	The Evolution of Homogeneity during Processing of Aluminium Alloys by HPT. <i>Materials Science Forum</i> , 2010 , 667-669, 277-282	0.4	3
50	Superplastic Behavior in Ultrafine-Grained Materials Produced by Equal-Channel Angular Pressing. <i>Materials Science Forum</i> , 2008 , 579, 29-40	0.4	3
49	Fabrication of High Strength Hybrid Materials through the Application of High-Pressure Torsion. <i>Acta Physica Polonica A</i> , 2018 , 134, 615-623	0.6	3

48	The flow characteristics of superplasticity. <i>Letters on Materials</i> , 2014 , 4, 78-83	0.9	3
47	An examination of microstructural evolution in a PbBn eutectic alloy processed by high-pressure torsion and subsequent self-annealing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 802, 140653	5.3	3
46	On prominent TRIP effect and non-basal slip in a TWIP high entropy alloy during high-pressure torsion processing. <i>Materials Characterization</i> , 2021 , 178, 111284	3.9	3
45	Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion. <i>Materials Letters</i> , 2021 , 302, 130364	3.3	3
44	An X-ray absorption spectroscopy investigation of the local atomic structure in Cu N iBi alloy after severe plastic deformation and ageing. <i>Philosophical Magazine</i> , 2015 , 95, 2482-2490	1.6	2
43	Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 63, 012101	0.4	2
42	Microstructure Development and Superplasticity in a Zn-22% Al Eutectoid Alloy Processed by Severe Plastic Deformation. <i>Materials Science Forum</i> , 2014 , 783-786, 2647-2652	0.4	2
41	Factors Influencing Ductility in Ultrafine-Grained Metals Processed by Equal-Channel Angular Pressing. <i>Materials Science Forum</i> , 2009 , 633-634, 341-352	0.4	2
40	Laser compression of nanocrystalline tantalum 2012,		2
39	Developing Superplasticity in Metallic Alloys through the Application of Severe Plastic Deformation. <i>Materials Science Forum</i> , 2008 , 604-605, 97-111	0.4	2
38	An Investigation of Cavitation in the Tensile Testing of a Spray-Cast Aluminum Alloy Processed by ECAP. <i>Materials Science Forum</i> , 2006 , 503-504, 83-90	0.4	2
37	Size Effect on Microstructural Evolution and Micromechanical Responses of Mechanically Bonded Aluminum and Magnesium by High-Pressure Torsion. <i>Advanced Engineering Materials</i> , 2020 , 22, 190097	1 ^{3.5}	2
36	Metal hybrids processed by high-pressure torsion: synthesis, microstructure, mechanical properties and developing trends. <i>International Materials Reviews</i> ,1-35	16.1	2
35	A stored energy analysis of grains with shear texture orientations in Cu-Ni-Si and Fe-Ni alloys processed by high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2021 , 864, 158142	5.7	2
34	Exploring the hydrogen absorption and strengthening behavior in nanocrystalline face-centered cubic high-entropy alloys. <i>Scripta Materialia</i> , 2021 , 203, 114069	5.6	2
33	Phase and structural changes during heat treatment of additive manufactured CrFeCoNi high-entropy alloy. <i>Journal of Alloys and Compounds</i> , 2022 , 889, 161495	5.7	2
32	Applying Conventional Creep Mechanisms to Ultrafine-Grained Materials. <i>Minerals, Metals and Materials Series</i> , 2017 , 117-131	0.3	1
31	Evolution Of Precipitate Morphology During Extrusion In Mg ZK60A Alloy. <i>Archives of Metallurgy and Materials</i> , 2015 , 60, 1423-1426		1

30	Microstructural homogeneity and superplastic behavior in an aluminumlopper eutectic alloy processed by high-pressure torsion. <i>Journal of Materials Science</i> , 2015 , 50, 6700-6712	4.3	1
29	The Development of Superplasticity and Deformation Mechanism Maps in an Ultrafine-Grained Magnesium Alloy. <i>Materials Science Forum</i> , 2016 , 879, 48-53	0.4	1
28	Micro-Mechanical Responses of Ultrafine-Grained Materials Processed through High-Pressure Torsion. <i>Materials Science Forum</i> , 2016 , 879, 42-47	0.4	1
27	Description of the Superplastic Flow Process by Deformation Mechanism Maps in Ultrafine-Grained Materials. <i>Materials Science Forum</i> , 2016 , 838-839, 51-58	0.4	1
26	Superplastic Flow and Micro-Mechanical Response of Ultrafine-Grained Materials. <i>Defect and Diffusion Forum</i> , 2018 , 385, 9-14	0.7	1
25	The characteristics of two-phase Al-Cu and Zn-Al alloys processed by high-pressure torsion. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 63, 012106	0.4	1
24	Factors Influencing the Shearing Patterns in High-Pressure Torsion. <i>Materials Science Forum</i> , 2014 , 783-786, 45-50	0.4	1
23	Evaluating the flow processes in ultrafine-grained materials at elevated temperatures. <i>Materials Research</i> , 2013 , 16, 565-570	1.5	1
22	Developing the Technique of Severe Plastic Deformation Processing through High-Pressure Torsion. <i>Materials Science Forum</i> , 2010 , 667-669, 397-402	0.4	1
21	Mechanical Properties of a Spray-Cast Aluminum Alloy Processed by Severe Plastic Deformation. <i>Materials Science Forum</i> , 2007 , 539-543, 141-148	0.4	1
20	On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion. <i>Journal of Alloys and Compounds</i> , 2022 , 904, 163941	5.7	1
19	Developing Superplasticity in High-Entropy Alloys Processed by Severe Plastic Deformation. <i>Materials Science Forum</i> , 2018 , 941, 1059-1064	0.4	1
18	Strain-dependent phase transformation mapping of diffusion-bonded nanocrystalline aluminum-magnesium by high-energy synchrotron X-rays. <i>Materials Letters</i> , 2022 , 321, 132414	3.3	1
17	Resolving the Strength-Ductility Paradox through Severe Plastic Deformation of a Cast Al-7% Si Alloy. <i>Materials Science Forum</i> , 2016 , 879, 1043-1048	0.4	O
16	Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion. <i>International Journal of Plasticity</i> , 2022 , 150, 103193	7.6	O
15	Effect of HPT processing followed by long term natural ageing on mechanical and electrical properties of commercially pure Cu. <i>Letters on Materials</i> , 2019 , 9, 561-565	0.9	O
14	Recent Developments in the Processing of Advanced Materials Using Severe Plastic Deformation. <i>Materials Science Forum</i> ,1016, 3-8	0.4	О
13	Hardness Development of Mechanically-Bonded Hybrid Nanostructured Alloys through High-Pressure Torsion. <i>Materials Science Forum</i> ,1016, 177-182	0.4	O

LIST OF PUBLICATIONS

12	Developments in Processing by Severe Plastic Deformation at the 3rd Pan American Materials Congress. <i>Jom</i> , 2017 , 69, 2022-2023	2.1
11	High Temperature Deformation Flow Of A ZK60A Magnesium Alloy After Extrusion. <i>Archives of Metallurgy and Materials</i> , 2015 , 60, 1327-1330	
10	Evaluating the Flow Properties of Ultrafine-Grained Materials. <i>Advanced Materials Research</i> , 2013 , 829, 3-9	0.5
9	Developing Hardness and Microstructural Homogeneity in High-Pressure Torsion. <i>Materials Science Forum</i> , 2012 , 706-709, 1805-1810	0.4
8	Extending Creep and Superplasticity to Materials with Submicrometer Grain Sizes. <i>Key Engineering Materials</i> , 2007 , 345-346, 539-544	0.4
7	Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: Effect of the degree of severe plastic deformation. <i>Intermetallics</i> , 2022 , 142, 107445	3.5
6	Investigating Anvil Alignment and Anvil Roughness on Flow Pattern Development in High-Pressure Torsion. <i>Materials Research Society Symposia Proceedings</i> , 2016 , 1818, 1	
5	Mechanical Behavior of a Metal Matrix Nanocomposite Synthesized by High-Pressure Torsion via Diffusion Bonding. <i>Materials Science Forum</i> , 2016 , 879, 1068-1073	0.4
4	Achieving Superplasticity in Fine-Grained Al-Mg-Sc Alloys. <i>Materials Science Forum</i> ,1016, 11-17	0.4
3	Micro-Scale Mechanical Behavior of Ultrafine-Grained Materials Processed by High-Pressure Torsion. <i>Materials Science Forum</i> , 2018 , 941, 1495-1500	0.4
2	On the thermal evolution of high-pressure torsion processed titanium aluminide. <i>Materials Letters</i> , 2021 , 304, 130650	3-3
1	In Situ Heating Neutron and X-Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive-Manufactured 316L Stainless Steel. <i>Advanced Engineering Materials</i> , 2022 , 24, 2270017	3.5