Nissar A Darmani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7194603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic design in a mammalian model of extreme metabolism, the North American least shrew (<i>Cryptotis parva</i>). Journal of Physiology, 2022, 600, 547-567.	1.3	6
2	An ontogenic study of receptor mechanisms by which acute administration of low-doses of methamphetamine suppresses DOI-induced 5-HT2A-receptor mediated head-twitch response in mice. BMC Neuroscience, 2022, 23, 2.	0.8	3
3	Evidence for Bell-Shaped Dose-Response Emetic Effects of Temsirolimus and Analogs: The Broad-Spectrum Antiemetic Efficacy of a Large Dose of Temsirolimus Against Diverse Emetogens in the Least Shrew (Cryptotis parva). Frontiers in Pharmacology, 2022, 13, 848673.	1.6	0
4	Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. International Journal of Molecular Sciences, 2021, 22, 5797.	1.8	64
5	Central and peripheral emetic loci contribute to vomiting evoked by the Akt inhibitor MK-2206 in the least shrew model of emesis. European Journal of Pharmacology, 2021, 900, 174065.	1.7	4
6	Signal transduction pathways involved in dopamine D2 receptor-evoked emesis in the least shrew (Cryptotis parva). Autonomic Neuroscience: Basic and Clinical, 2021, 233, 102807.	1.4	2
7	The Contribution of Phospholipase C in Vomiting in the Least Shrew (Cryptotis Parva) Model of Emesis. Frontiers in Pharmacology, 2021, 12, 736842.	1.6	2
8	The pivotal role of glycogen synthase kinase 3 (GSK-3) in vomiting evoked by specific emetogens in the least shrew (Cryptotis parva). Neurochemistry International, 2020, 132, 104603.	1.9	7
9	Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacological Research, 2020, 161, 105124.	3.1	25
10	Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behavioural Pharmacology, 2020, 31, 3-14.	0.8	7
11	Δ9-THC and related cannabinoids suppress substance P- induced neurokinin NK1-receptor-mediated vomiting via activation of cannabinoid CB1 receptor. European Journal of Pharmacology, 2019, 865, 172806.	1.7	10
12	Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochemistry International, 2019, 122, 106-119.	1.9	16
13	Role of Calcium in Vomiting. , 2018, , .		0
14	Intracellular emetic signaling evoked by the L-type Ca2+ channel agonist FPL64176 in the least shrew (Cryptotis parva). European Journal of Pharmacology, 2018, 834, 157-168.	1.7	13
15	The broadâ€spectrum antiemetic efficacy of the ryanodine receptor antagonist, dantrolene, in the least shrew (Cryptotis parva). FASEB Journal, 2018, 32, 701.3.	0.2	0
16	The anti-asthmatic drug pranlukast suppresses the delayed-phase vomiting and reverses intracellular indices of emesis evoked by cisplatin in the least shrew (Cryptotis parva). European Journal of Pharmacology, 2017, 809, 20-31.	1.7	9
17	Ca2+ signaling and emesis: Recent progress and new perspectives. Autonomic Neuroscience: Basic and Clinical, 2017, 202, 18-27.	1.4	22
18	Intracellular vomit signals and cascades downstream of emetic receptors: Evidence from the least shrew () model of vomiting. Remedy Open Access, 2017, 2, .	0.0	1

#	Article	IF	CITATIONS
19	Thapsigargin-induced activation of Ca2+-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew. Neuropharmacology, 2016, 103, 195-210.	2.0	35
20	Differential and additive suppressive effects of 5-HT3 (palonosetron)- and NK1 (netupitant)-receptor antagonists on cisplatin-induced vomiting and ERK1/2, PKA and PKC activation. Pharmacology Biochemistry and Behavior, 2015, 131, 104-111.	1.3	30
21	L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIÎ \pm and ERK activation and induction of emesis in the least shrew (Cryptotis parva). European Journal of Pharmacology, 2015, 755, 110-118.	1.7	17
22	Lâ€Type Calcium Channels Contribute to 5â€HT3â€Receptorâ€Evoked CaMKIIα and ERK Activation and Induction Emesis in the Least Shrew (Cryptotis parva). FASEB Journal, 2015, 29, 628.2.	8f.2	0
23	Role of Calcium in Vomiting: Revelations from the Least Shrew Model of Emesis. Gastro - Open Journal, 2015, 1, 119-128.	0.1	0
24	Serotonin 5-HT3 Receptor-Mediated Vomiting Occurs via the Activation of Ca2+/CaMKII-Dependent ERK1/2 Signaling in the Least Shrew (Cryptotis parva). PLoS ONE, 2014, 9, e104718.	1.1	36
25	Broad-spectrum antiemetic potential of the L-type calcium channel antagonist nifedipine and evidence for its additive antiemetic interaction with the 5-HT3 receptor antagonist palonosetron in the least shrew (Cryptotis parva). European Journal of Pharmacology, 2014, 722, 2-12.	1.7	31
26	Additive antiemetic efficacy of low-doses of the cannabinoid CB1/2 receptor agonist Δ9-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis) Tj ETQq0 0 0 rg	g B7 ∕Overl	ouak 10 Tf 5
27	Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. European Journal of Pharmacology, 2014, 722, 134-146.	1.7	161
28	Broad-spectrum antiemetic efficacy of the l-type calcium channel blocker amlodipine in the least shrew (Cryptotis parva). Pharmacology Biochemistry and Behavior, 2014, 120, 124-132.	1.3	19
29	Cyclophosphamide causes activation of protein kinase A (PKA) in the brainstem of vomiting least shrews (Cryptotis parva). European Journal of Pharmacology, 2014, 722, 156-164.	1.7	13
30	Preface. European Journal of Pharmacology, 2014, 722, 1.	1.7	4
31	Ca 2+ /CaMKIIâ€dependent ERK1/2 signaling mediates serotonin 5â€HT 3 receptorâ€mediated vomiting (LB742). FASEB Journal, 2014, 28, LB742.	0.2	0
32	Cisplatin causes over-expression of tachykinin NK1 receptors and increases ERK1/2- and PKA― phosphorylation during peak immediate- and delayed-phase emesis in the least shrew (Cryptotis parva) brainstem. European Journal of Pharmacology, 2013, 698, 161-169.	1.7	33
33	Histomorphology and Immunohistochemistry of the Lower Esophageal Sphincter of the Least Shrew(Cryptotis Parva). Cells Tissues Organs, 2013, 198, 390-397.	1.3	1
34	The Role of Endocannabinoids and Arachidonic Acid Metabolites in Emesis. , 2013, , 25-59.		2
35	New Vistas in the Pathophysiology of Vomiting. Family Medicine & Medical Science Research, 2013, 02, .	0.1	0
36	Additive antiemetic efficacy of Δ 9 â€THC with vanilloid TRPV1 receptor agonists in the least shrew (Cryptotis parva). FASEB Journal, 2013, 27, 1093.20.	0.2	0

NISSAR A DARMANI

#	Article	IF	CITATIONS
37	Distribution of Serotonin-immunoreactive Enterochromaffin Cells in the Gastrointestinal Tract of the Least Shrew (Cryptotis parva). International Journal of Morphology, 2012, 30, 916-923.	0.1	6
38	Synergistic antiemetic interactions between serotonergic 5-HT3 and tachykininergic NK1-receptor antagonists in the least shrew (Cryptotis parva). Pharmacology Biochemistry and Behavior, 2011, 99, 573-579.	1.3	46
39	Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms. Pharmaceuticals, 2010, 3, 2163-2177.	1.7	66
40	Exercise-induced nausea and vomiting: another sign and symptom of pheochromocytoma and paraganglioma. Endocrine, 2010, 37, 403-407.	1.1	19
41	Pranlukast prevents cysteinyl leukotriene-induced emesis in the least shrew (Cryptotis parva). European Journal of Pharmacology, 2010, 628, 195-201.	1.7	18
42	Differential temporal changes in brain and gut substance P mRNA expression throughout the time-course of cisplatin-induced vomiting in the least shrew (Cryptotis parva). Brain Research, 2010, 1310, 103-112.	1.1	13
43	<i>In vitro</i> antiviral activity of neem (<i>Azardirachta indica</i> L.) bark extract against herpes simplex virus typeâ€l infection. Phytotherapy Research, 2010, 24, 1132-1140.	2.8	96
44	Zebrafish-Encoded 3- <i>O</i> -Sulfotransferase-3 Isoform Mediates Herpes Simplex Virus Type 1 Entry and Spread. Zebrafish, 2010, 7, 181-187.	0.5	20
45	Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting. Pharmaceuticals, 2010, 3, 2930-2955.	1.7	27
46	Pranlukast prevents cysteinyl leukotrieneâ€induced emesis in the least shrew (Cryptotis parva). FASEB Journal, 2010, 24, 969.10.	0.2	0
47	The antiemetic interaction of î"9-tetrahydrocannabinol when combined with tropisetron or dexamethasone in the least shrew. Pharmacology Biochemistry and Behavior, 2009, 91, 367-373.	1.3	14
48	Receptor-selective agonists induce emesis and Fos expression in the brain and enteric nervous system of the least shrew (Cryptotis parva). Pharmacology Biochemistry and Behavior, 2009, 94, 211-218.	1.3	33
49	A re-evaluation of the neurotransmitter basis of chemotherapy-induced immediate and delayed vomiting: Evidence from the least shrew. Brain Research, 2009, 1248, 40-58.	1.1	50
50	Δ9-Tetrahydrocannabinol suppresses vomiting behavior and Fos expression in both acute and delayed phases of cisplatin-induced emesis in the least shrew. Behavioural Brain Research, 2009, 196, 30-36.	1.2	35
51	An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate. Biochemical and Biophysical Research Communications, 2009, 390, 382-387.	1.0	10
52	Evidence for a Re-Evaluation of the Neurochemical and Anatomical Bases of Chemotherapy-Induced Vomiting. Chemical Reviews, 2009, 109, 3158-3199.	23.0	100
53	Ablation of least shrew central neurokinin NKâ,•receptors reduces CR73632-induced vomiting Behavioral Neuroscience, 2009, 123, 701-706.	0.6	27
54	Utilization of the least shrew as a rapid and selective screening model for the antiemetic potential and brain penetration of substance P and NK1 receptor antagonists. Brain Research, 2008, 1214, 58-72.	1.1	50

NISSAR A DARMANI

#	Article	IF	CITATIONS
55	Preprotachykininâ€A mRNA changes in response to cisplatinâ€induced emesis in the least shrew. FASEB Journal, 2008, 22, 1138.14.	0.2	0
56	A histologically derived stereotaxic atlas and substance P immunohistochemistry in the brain of the least shrew (Cryptotis parva) support its role as a model organism for behavioral and pharmacological research. Brain Research, 2007, 1156, 99-111.	1.1	14
57	Receptor mechanism and antiemetic activity of structurallyâ€diverse cannabinoids against radiationâ€induced emesis in the least shrew. European Journal of Pharmacology, 2007, 563, 187-196.	1.7	32
58	Methods Evaluating Cannabinoid and Endocannabinoid Effects on Gastrointestinal Functions. , 2006, 123, 169-189.		9
59	Delta-9-tetrahydrocannabinol differentially suppresses emesis versus enhanced locomotor activity produced by chemically diverse dopamine D/D receptor agonists in the least shrew (). Pharmacology Biochemistry and Behavior, 2005, 80, 35-44.	1.3	42
60	Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: Review of the available pre-clinical data, and first human studies. Neuropharmacology, 2005, 48, 1154-1163.	2.0	131
61	Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology, 2005, 49, 502-513.	2.0	42
62	Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. European Journal of Pharmacology, 2004, 488, 201-212.	1.7	83
63	Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. European Journal of Pharmacology, 2003, 459, 83-95.	1.7	36
64	The Potent Emetogenic Effects of the Endocannabinoid, 2-AG (2-Arachidonoylglycerol) Are Blocked by Δ9-Tetrahydrocannabinol and Other Cannnabinoids. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 34-42.	1.3	76
65	Reversal of SR 141716A-induced head-twitch and ear-scratch responses in mice by Δ9-THC and other cannabinoids. Pharmacology Biochemistry and Behavior, 2002, 71, 155-162.	1.3	45
66	Cannabinoids of diverse structure inhibit two DOI-induced 5-HT2A receptor-mediated behaviors in mice. Pharmacology Biochemistry and Behavior, 2001, 68, 311-317.	1.3	72
67	Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmacology Biochemistry and Behavior, 2001, 69, 239-249.	1.3	97
68	The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. European Journal of Pharmacology, 2001, 430, 49-58.	1.7	77
69	Early postnatal cocaine exposure causes sequential, dose-dependent, enduring but reversible supersensitivity in 5-HT2A receptor-mediated function during development in male mice. Neurotoxicology and Teratology, 2000, 22, 61-69.	1.2	5
70	Cocaine and Selective Monoamine Uptake Blockers (Sertraline, Nisoxetine, and GBR 12935) Prevent the d-Fenfluramine-Induced Head-Twitch Response in Mice. Pharmacology Biochemistry and Behavior, 1998, 60, 83-90.	1.3	19
71	Production of serotonin syndrome by 8-OH DPAT in cryptotis parva. Physiology and Behavior, 1998, 65, 327-331.	1.0	14
72	Differential potentiation of L-tryptophan-induced head-twitch response in mice by cocaine and sertraline. Life Sciences, 1996, 59, 1109-1119.	2.0	13

NISSAR A DARMANI

#	Article	IF	CITATIONS
73	Differential Ontogenesis of Three DOI-Induced Behaviors in Mice. Physiology and Behavior, 1996, 60, 1495-1500.	1.0	43
74	The stimulatory and inhibitory components of cocaine's actions on the 5-HTP-induced 5-HT2A receptor response. Pharmacology Biochemistry and Behavior, 1996, 55, 387-396.	1.3	16
75	Temporal differential adaptation of head-twitch and ear-scratch responses following administration of challenge doses of DOI. Pharmacology Biochemistry and Behavior, 1995, 50, 545-550.	1.3	32
76	The head-twitch response in the least shrew (Cryptotis parva) is a 5-HT2â^' and not a 5-HT1C-mediated phenomenon. Pharmacology Biochemistry and Behavior, 1994, 48, 383-396.	1.3	31
77	Role of the inhibitory adrenergic α2 and serotonergic 5-HT1A components of cocaine's actions on the DOI-induced head-twitch response in 5-HT2-receptor supersensitive mice. Pharmacology Biochemistry and Behavior, 1993, 45, 269-274.	1.3	8
78	Inhibition of 5-HT2 receptor-mediated head-twitch response by cocaine via indirect stimulation of adrenergic α2 and serotonergic 5-HT1A receptors. Pharmacology Biochemistry and Behavior, 1991, 38, 353-357.	1.3	26
79	Do functional relationships exist between 5-HT1A and 5-HT2 receptors?. Pharmacology Biochemistry and Behavior, 1990, 36, 901-906.	1.3	224