
Robert A Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7194398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy, 2022, 18, 1534-1550.	9.1	7
2	Neutrophil extracellular traps regulate ischemic stroke brain injury. Journal of Clinical Investigation, 2022, 132, .	8.2	102
3	FGF21 (Fibroblast Growth Factor 21) Defines a Potential Cardiohepatic Signaling Circuit in End-Stage Heart Failure. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008910.	3.9	16
4	Shining a light on platelet activation in COVIDâ ${\in}1$ 9. Journal of Thrombosis and Haemostasis, 2022, , .	3.8	3
5	Neutrophil cathepsin G proteolysis of protease-activated receptor 4Âgenerates a novel, functional tethered ligand. Blood Advances, 2022, 6, 2303-2308.	5.2	5
6	COVID-19 and Sepsis Are Associated With Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 401-414.	2.4	82
7	Role of Platelets in Detection and Regulation of Infection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 70-78.	2.4	52
8	Different glycoforms of alpha-1-acid glycoprotein contribute to its functional alterations in platelets and neutrophils. Journal of Leukocyte Biology, 2021, 109, 915-930.	3.3	8
9	Hyperglycemia exacerbates ischemic stroke outcome independent of platelet glucose uptake. Journal of Thrombosis and Haemostasis, 2021, 19, 536-546.	3.8	19
10	Is there a role for the ACE2 receptor in SARS oVâ€2 interactions with platelets?. Journal of Thrombosis and Haemostasis, 2021, 19, 46-50.	3.8	75
11	Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. Journal of Leukocyte Biology, 2021, 109, 55-66.	3.3	82
12	Platelet electrical resistance for measuring platelet activation and adhesion in human health and disease. Thrombosis Research, 2021, 198, 204-209.	1.7	1
13	Heparanase expression and activity are increased in platelets during clinical sepsis. Journal of Thrombosis and Haemostasis, 2021, 19, 1319-1330.	3.8	15
14	Platelet MHC class I mediates CD8+ T-cell suppression during sepsis. Blood, 2021, 138, 401-416.	1.4	46
15	Comparison of the coagulopathies associated with COVIDâ€19 and sepsis. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12525.	2.3	41
16	Brothers in arms: platelets and neutrophils in ischemic stroke. Current Opinion in Hematology, 2021, 28, 301-307.	2.5	28
17	Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide. Blood, 2021, 138, 977-988.	1.4	16
18	Mechanisms of immunothrombosis in COVID-19. Current Opinion in Hematology, 2021, 28, 445-453.	2.5	30

ROBERT A CAMPBELL

#	Article	IF	CITATIONS
19	Impact of the COVIDâ€19 pandemic on education and clinical training. Journal of Thrombosis and Haemostasis, 2021, 19, 2099-2100.	3.8	1
20	COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight, 2021, 6, .	5.0	57
21	Megakaryocyte-specific knockout of the Mir-99b/let7e/125a cluster lowers platelet count without altering platelet function. Blood Cells, Molecules, and Diseases, 2021, 92, 102624.	1.4	1
22	The mTOR Pathway in Platelets Contributes to the Pathophysiology of Experimental Cerebral Malaria. Blood, 2021, 138, 580-580.	1.4	0
23	Longitudinal RNA-Seq Analysis of the Repeatability of Gene Expression and Splicing in Human Platelets Identifies a Platelet <i>SELP</i> Splice QTL. Circulation Research, 2020, 126, 501-516.	4.5	39
24	miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood, 2020, 136, 1760-1772.	1.4	26
25	FcÎ ³ RIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus. Blood, 2020, 136, 2933-2945.	1.4	25
26	COVIDâ€19 patients exhibit reduced procoagulant platelet responses. Journal of Thrombosis and Haemostasis, 2020, 18, 3067-3073.	3.8	55
27	Platelet gene expression and function in patients with COVID-19. Blood, 2020, 136, 1317-1329.	1.4	741
28	Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, 136, 1169-1179.	1.4	1,071
29	Haem oxygenase protects against thrombocytopaenia and malaria-associated lung injury. Malaria Journal, 2020, 19, 234.	2.3	2
30	Platelet necrosis mediates ischemic stroke outcome in mice. Blood, 2020, 135, 429-440.	1.4	61
31	Mucosal-associated invariant T (MAIT) cells mediate protective host responses in sepsis. ELife, 2020, 9, .	6.0	22
32	Cathepsin G Cleavage of PAR4 Generates a Novel Tethered Ligand That Induces Platelet Activation. Blood, 2020, 136, 2-2.	1.4	1
33	Blockade of Human PAR4 in Novel Humanized Mouse Strains Supports PAR4 As a Potential Target in Stroke: Ex Vivo Demonstration of Platelet Hyperreactivity of the Thr120 Variant. Blood, 2020, 136, 12-12.	1.4	1
34	Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood, 2019, 134, 911-923.	1.4	111
35	TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood, 2019, 134, 727-740.	1.4	199
36	Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood, 2019, 133, 2013-2026.	1.4	127

ROBERT A CAMPBELL

#	Article	IF	CITATIONS
37	Interleukin 6 receptor alpha expression in PMNs isolated from prematurely born neonates: decreased expression is associated with differential mTOR signaling. Pediatric Research, 2019, 86, 55-62.	2.3	Ο
38	Anti-apoptotic <i>BCL2L2</i> increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica, 2019, 104, 2075-2083.	3.5	23
39	Glucose Metabolism Is Required for Platelet Hyperactivation in a Murine Model of Type 1 Diabetes. Diabetes, 2019, 68, 932-938.	0.6	33
40	Management of coagulation disorders in severe inflammation. HemaSphere, 2019, 3, 95-98.	2.7	2
41	Altered functions of platelets during aging. Current Opinion in Hematology, 2019, 26, 336-342.	2.5	33
42	Integrin αDβ2 influences cerebral edema, leukocyte accumulation and neurologic outcomes in experimental severe malaria. PLoS ONE, 2019, 14, e0224610.	2.5	4
43	The reduced form of coagulation factor XI is associated with illness severity and coagulopathy in critically-ill septic patients. Journal of Thrombosis and Thrombolysis, 2019, 47, 186-191.	2.1	4
44	Endogenous LINE-1 (Long Interspersed Nuclear Element-1) Reverse Transcriptase Activity in Platelets Controls Translational Events Through RNA–DNA Hybrids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 801-815.	2.4	29
45	Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging. Journal of Immunology, 2018, 200, 295-304.	0.8	71
46	Advanced age results in a diminished endothelial glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H531-H539.	3.2	79
47	TNF-α Driven Inflammation and Mitochondrial Dysfunction Characterize the Platelet Hyperreactivity of Aging and Myeloproliferative Neoplasms (MPN). Blood, 2018, 132, 1134-1134.	1.4	10
48	Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function. Cell Reports, 2017, 20, 881-894.	6.4	57
49	Clots Are Potent Triggers of Inflammatory Cell Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1819-1827.	2.4	21
50	Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1628-1639.	2.4	25
51	RGDfKâ€functionalized gold nanorods bind only to activated platelets. Journal of Biomedical Materials Research - Part A, 2017, 105, 209-217.	4.0	6
52	Deletion of the Arp2/3 complex in megakaryocytes leads to microthrombocytopenia in mice. Blood Advances, 2017, 1, 1398-1408.	5.2	33
53	Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. Journal of Clinical Investigation, 2016, 126, 3783-3798.	8.2	111
54	Integrin αDβ2 (CD11d/CD18) mediates experimental malaria-associated acute respiratory distress syndrome (MA-ARDS). Malaria Journal, 2016, 15, 393.	2.3	18

ROBERT A CAMPBELL

#	Article	IF	CITATIONS
55	Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood, 2016, 127, 1468-1480.	1.4	34
56	Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood, 2016, 127, 1743-1751.	1.4	79
57	Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thrombosis and Haemostasis, 2013, 109, 684-695.	3.4	28
58	Novel Anti-bacterial Activities of β-defensin 1 in Human Platelets: Suppression of Pathogen Growth and Signaling of Neutrophil Extracellular Trap Formation. PLoS Pathogens, 2011, 7, e1002355.	4.7	223
59	Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood, 2009, 114, 4886-4896.	1.4	133
60	Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 2008, 38, 15-23.	1.0	270
61	Cellular Procoagulant Activity Dictates Clot Structure and Stability as a Function of Distance From the Cell Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2247-2254.	2.4	70
62	A novel approach to improving recombinant factor VIIa activity with a preserved platelet preparation. British Journal of Haematology, 2007, 138, 82-93.	2.5	7
63	Rehydrated, Lyophilized Platelets Generate Thrombin in the Presence of Recombinant Factor VIIa Blood, 2005, 106, 4057-4057.	1.4	32