
Goldis Malek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193648/publications.pdf Version: 2024-02-01

COLDIS MALER

#	Article	IF	CITATIONS
1	The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Progress in Retinal and Eye Research, 2010, 29, 95-112.	7.3	696
2	Reticular Pseudodrusen Are Subretinal Drusenoid Deposits. Ophthalmology, 2010, 117, 303-312.e1.	2.5	406
3	Apolipoprotein E allele-dependent pathogenesis: A model for age-related retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11900-11905.	3.3	250
4	Apolipoprotein B in Cholesterol-Containing Drusen and Basal Deposits of Human Eyes with Age-Related Maculopathy. American Journal of Pathology, 2003, 162, 413-425.	1.9	243
5	Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Experimental Eye Research, 2005, 81, 731-741.	1.2	227
6	Sub-retinal drusenoid deposits in human retina: Organization and composition. Experimental Eye Research, 2008, 87, 402-408.	1.2	177
7	Lipoprotein-like Particles and Cholesteryl Esters in Human Bruch's Membrane: Initial Characterization. , 2005, 46, 2576.		137
8	Peripapillary chorioretinal atrophy. Ophthalmology, 2000, 107, 334-343.	2.5	119
9	Molecular genetics of AMD and current animal models. Angiogenesis, 2007, 10, 119-132.	3.7	87
10	Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration. Ophthalmology, 2000, 107, 2256-2266.	2.5	83
11	Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4069-78.	3.3	74
12	Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochemical and Biophysical Research Communications, 2004, 323, 1203-1208.	1.0	59
13	Research Resource: Nuclear Receptor Atlas of Human Retinal Pigment Epithelial Cells: Potential Relevance to Age-Related Macular Degeneration. Molecular Endocrinology, 2011, 25, 360-372.	3.7	53
14	The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells. Biochemical and Biophysical Research Communications, 2005, 337, 241-247.	1.0	50
15	Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Frontiers in Cell and Developmental Biology, 2020, 8, 612812.	1.8	50
16	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	2.7	48
17	Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cellular and Molecular Life Sciences, 2014, 71, 4617-4636.	2.4	45
18	Aryl hydrocarbon receptor knockâ€out exacerbates choroidal neovascularization via multiple pathogenic pathways. Journal of Pathology, 2015, 235, 101-112.	2.1	43

GOLDIS MALEK

#	Article	IF	CITATIONS
19	Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight, 2018, 3, .	2.3	42
20	Models of retinal diseases and their applicability in drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 359-377.	2.5	33
21	LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight, 2020, 5, .	2.3	33
22	PPARβ(δ selectively regulates phenotypic features of age-related macular degeneration. Aging, 2016, 8, 1952-1978.	1.4	32
23	Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1473-1482.	1.9	27
24	Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Experimental Eye Research, 2022, 222, 109170.	1.2	27
25	Bone Marrow Transplantation Transfers Age-Related Susceptibility to Neovascular Remodeling in Murine Laser-Induced Choroidal Neovascularization. , 2013, 54, 7439.		22
26	The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 6777.	1.8	18
27	Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1583-1595.	1.8	17
28	Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases. Journal of Biomolecular Screening, 2016, 21, 1007-1018.	2.6	12
29	A Review of Pathogenic Drivers of Age-Related Macular Degeneration, Beyond Complement, with aÂFocus on Potential Endpoints for Testing Therapeutic Interventions in Preclinical Studies. Advances in Experimental Medicine and Biology, 2019, 1185, 9-13.	0.8	12
30	NURR1 expression regulates retinal pigment epithelial–mesenchymal transition and age-related macular degeneration phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
31	RECURRENT CHOROIDAL NEOVASCULARIZATION AFTER MACULAR TRANSLOCATION SURGERY WITH 360-DEGREE PERIPHERAL RETINECTOMY. Retina, 2008, 28, 1221-1227.	1.0	10
32	A Brief Discussion on Lipid Activated Nuclear Receptors and their Potential Role in Regulating Microglia in Age-Related Macular Degeneration (AMD). Advances in Experimental Medicine and Biology, 2016, 854, 45-51.	0.8	10
33	Leveraging Nuclear Receptors as Targets for Pathological Ocular Vascular Diseases. International Journal of Molecular Sciences, 2020, 21, 2889.	1.8	9
34	Osteopontin accumulates in basal deposits of human eyes with age-related macular degeneration and may serve as a biomarker of aging. Modern Pathology, 2022, 35, 165-176.	2.9	9
35	Characterization of Calcium Phosphate Spherical Particles in the Subretinal Pigment Epithelium–Basal Lamina Space in Aged Human Eyes. Ophthalmology Science, 2021, 1, 100053.	1.0	7
36	PPAR Nuclear Receptors and Altered RPE Lipid Metabolism in Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2010, 664, 429-436.	0.8	7

GOLDIS MALEK

#	Article	IF	CITATIONS
37	Nuclear Receptors as Potential Therapeutic Targets for Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2014, 801, 317-321.	0.8	7
38	Quick-freeze/deep-etch electron microscopy visualization of the mouse posterior pole. Experimental Eye Research, 2017, 162, 62-72.	1.2	6
39	Exploring the Potential Role of the Oxidant-Activated Transcription Factor Aryl Hydrocarbon Receptor in the Pathogenesis of AMD. Advances in Experimental Medicine and Biology, 2012, 723, 51-59.	0.8	5
40	Initial Observations of Key Features of Age-Related Macular Degeneration in APOE Targeted Replacement Mice. , 2006, 572, 109-117.		4
41	Cell Line Authentication in Vision Research and Beyond: A Tale Retold. , 2020, 61, 19.		3
42	Gene Delivery of a Caspase Activation and Recruitment Domain Improves Retinal Pigment Epithelial Function and Modulates Inflammation in a Mouse Model with Features of Dry Age-Related Macular Degeneration. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 359-371.	0.6	3
43	ERG Responses and Microarray Analysis of Gene Expression in a Multifactorial Murine Model of Age-Related Retinal Degeneration. Advances in Experimental Medicine and Biology, 2008, 613, 165-170.	0.8	2
44	Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. Laboratory Investigation, 2022, 102, 1132-1142.	1.7	2
45	Models of Pathologies Associated with Age-Related Macular Degeneration and Their Utilities in Drug Discovery. Topics in Medicinal Chemistry, 2020, , 83-123.	0.4	1
46	Internalization of Angiotensinâ€(1â€12) in Adult Retinal Pigment Epithelialâ€19 Cells. FASEB Journal, 2022, 36, .	0.2	1
47	15th Biennial AOPT Scientific Meeting: Restoring Vision Through Regeneration Virtual Meeting, March 4th–7th, 2021. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 713-714.	0.6	0