
Ayman H Zaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valorization of industrial iron and zinc sludges for the synthesis of ZnFe2O4 ceramics. Journal of Magnetism and Magnetic Materials, 2022, 544, 168681.	1.0	4
2	Facile synthesis of Ni-incorporated and nitrogen-doped reduced graphene oxide as an effective electrode material for tri(ammonium) phosphate electro-oxidation. Materials Advances, 2022, 3, 2760-2771.	2.6	5
3	Composite Catalyst for Conversion of Plastic Waste to Fuel: Preparation and Performance. International Journal of Self-Propagating High-Temperature Synthesis, 2022, 31, 10-16.	0.2	1
4	Electro-oxidation of tri(ammonium) phosphate: New hydrogen source compatible with Ni-based electro-catalysts. International Journal of Hydrogen Energy, 2022, 47, 25280-25288.	3.8	4
5	Consecutive removal of heavy metals and dyes by a fascinating method using titanate nanotubes. Journal of Environmental Chemical Engineering, 2021, 9, 104726.	3.3	17
6	Effect of hydrothermal time and acid-washing on the antibacterial activity of Sodium titanate nanotubes. IOP Conference Series: Materials Science and Engineering, 2021, 1046, 012025.	0.3	4
7	Studying and evaluating catalytic pyrolysis of polypropylene. Egyptian Journal of Chemistry, 2021, .	0.1	1
8	Innovative biotemplates for the synthesis of ZnO nanoparticles with versatile morphologies. Journal of Sol-Gel Science and Technology, 2021, 99, 326-338.	1.1	4
9	Improved production of titanate nanotubes by hydrothermal method for adsorption of organic dyes. Beni-Suef University Journal of Basic and Applied Sciences, 2021, 10, .	0.8	3
10	Effect of Different TiO ₂ Morphologies on the Activity of Immobilized Lipase for Biodiesel Production. ACS Omega, 2021, 6, 35484-35493.	1.6	7
11	Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. International Journal of Biological Macromolecules, 2020, 146, 1169-1179.	3.6	24
12	TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18549-18557.	1.8	25
13	Changing the morphology of one-dimensional titanate nanostructures affects its tissue distribution and toxicity. Toxicology and Industrial Health, 2020, 36, 272-286.	0.6	4
14	<p>Prostate Cancer Cellular Uptake of Ternary Titanate Nanotubes/CuFe₂0₄/Zn-Fe Mixed Metal Oxides Nanocomposite</p> . International Journal of Nanomedicine, 2020, Volume 15, 619-631.	3.3	5
15	Acceleration of ammonium phosphate hydrolysis using TiO ₂ microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2020, 2, 2080-2086.	2.2	10
16	Biosynthesis of Silver Nanoparticles from Synechocystis sp to be Used as a Flocculant Agent with Different Microalgae Strains. Current Nanomaterials, 2020, 5, 175-187.	0.2	15
17	Sodium titanate nanotubes for efficient transesterification of oils into biodiesel. Environmental Science and Pollution Research, 2019, 26, 36388-36400.	2.7	19
18	Effects of K+, Mg2+, Ca2+, Zn2+, La3+, Cr3+, Ce3+, Ce4+, and Mo5+ Doping on the Adsorption Performance and Optical Properties of Sodium Titanate Nanotubes. ACS Omega, 2019, 4, 19623-19634.	1.6	10

Αύμαν Η Ζακι

#	Article	IF	CITATIONS
19	Kinetics study on esterification of acrylic acid and ethanol over acidic cation-exchange resin beads Amberlyst 35. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 44-50.	2.7	10
20	Novel magnetic standpoints in Na2Ti3O7 nanotubes. Journal of Magnetism and Magnetic Materials, 2019, 476, 207-212.	1.0	16
21	Morphological effect of titanate nanostructures on the photocatalytic degradation of crystal violet. Nanomaterials and Nanotechnology, 2019, 9, 184798041882177.	1.2	36
22	Nanocomposite system of simultaneously-thiolated graphene oxide and polyaniline nanofibers for energy storage applications. Electrochimica Acta, 2019, 300, 1-8.	2.6	9
23	Efficient Removal of Lead and Cadmium ions by Titanate Nanotubes Prepared at Different Hydrothermal Conditions. Current Nanoscience, 2019, 15, 197-208.	0.7	4
24	Nano Titania combined with micro silica reinforced limestone cement:Physico-mechanical Investigation. Egyptian Journal of Chemistry, 2019, .	0.1	3
25	Fe Co1â ^{~,} -doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. International Journal of Hydrogen Energy, 2018, 43, 7990-7997.	3.8	22
26	Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 164-173.	1.7	46
27	Synthesis of Fe/Co-doped titanate nanotube as redox catalyst for photon-induced water splitting. Materials Chemistry and Physics, 2018, 217, 125-132.	2.0	26
28	Influence of Mn, Cu, and Cd–doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 100-109.	2.3	48
29	Morphology transformation from titanate nanotubes to TiO2 microspheres. Materials Science in Semiconductor Processing, 2018, 75, 10-17.	1.9	20
30	Synthesis, physicochemical properties and photocatalytic activity of nanosized Mg doped Mn ferrite. Journal of Molecular Liquids, 2017, 231, 589-596.	2.3	28
31	Sodium titanate - Bacillus as a new Nanopesticides for Cotton Leaf-Worm. Journal of Pure and Applied Microbiology, 2017, 11, 725-732.	0.3	19
32	Control of Selectivity in Heterogeneous Photocatalysis by Tuning TiO ₂ Morphology for Water Treatment Applications. Nanomaterials and Nanotechnology, 2016, 6, 12.	1.2	34
33	CO2 decomposition over freshly reduced nano-crystallite Cu0.5Zn0.5Fe2O4 at 400–600°C. Journal of Analytical and Applied Pyrolysis, 2008, 81, 272-277.	2.6	12
34	Kinetics and mechanisms of the reduction of Cu0.5Zn0.5Fe2O4 with hydrogen at 400–600°C for the production of metallic nanoparticles. Journal of Analytical and Applied Pyrolysis, 2007, 80, 346-352.	2.6	8