Melina Schuh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193489/publications.pdf Version: 2024-02-01

MELINA SCHUH

#	Article	IF	CITATIONS
1	Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes. Cell, 2007, 130, 484-498.	28.9	480
2	A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 2017, 171, 1692-1706.e18.	28.9	342
3	A New Model for Asymmetric Spindle Positioning in Mouse Oocytes. Current Biology, 2008, 18, 1986-1992.	3.9	285
4	An actin-dependent mechanism for long-range vesicleÂtransport. Nature Cell Biology, 2011, 13, 1431-1436.	10.3	275
5	Restarting life: fertilization and the transition from meiosis to mitosis. Nature Reviews Molecular Cell Biology, 2013, 14, 549-562.	37.0	243
6	Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science, 2015, 348, 1143-1147.	12.6	242
7	Chromosome errors in human eggs shape natural fertility over reproductive life span. Science, 2019, 365, 1466-1469.	12.6	239
8	Spire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division. Current Biology, 2011, 21, 955-960.	3.9	224
9	Resolution of Chiasmata in Oocytes Requires Separase-Mediated Proteolysis. Cell, 2006, 126, 135-146.	28.9	218
10	The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. Journal of Cell Biology, 2012, 198, 357-370.	5.2	182
11	Mechanisms of Aneuploidy in Human Eggs. Trends in Cell Biology, 2017, 27, 55-68.	7.9	171
12	Vesicles modulate an actin network for asymmetric spindle positioning. Nature Cell Biology, 2013, 15, 937-947.	10.3	145
13	A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nature Communications, 2015, 6, 7217.	12.8	128
14	Actin protects mammalian eggs against chromosome segregation errors. Science, 2017, 357, .	12.6	127
15	A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science, 2019, 364, .	12.6	120
16	Acute and rapid degradation of endogenous proteins by Trim-Away. Nature Protocols, 2018, 13, 2149-2175.	12.0	108
17	Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. ELife, 2015, 4, e11389.	6.0	102
18	Assembly and Positioning of the Oocyte Meiotic Spindle. Annual Review of Cell and Developmental Biology, 2018, 34, 381-403.	9.4	97

Melina Schuh

#	Article	IF	CITATIONS
19	Parental genome unification is highly error-prone in mammalian embryos. Cell, 2021, 184, 2860-2877.e22.	28.9	89
20	Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature, 2015, 524, 239-242.	27.8	78
21	Spire and Formin 2 Synergize and Antagonize in Regulating Actin Assembly in Meiosis by a Ping-Pong Mechanism. PLoS Biology, 2014, 12, e1001795.	5.6	76
22	Meiotic Kinetochores Fragment into Multiple Lobes upon Cohesin Loss in Aging Eggs. Current Biology, 2019, 29, 3749-3765.e7.	3.9	65
23	The BTG4 and CAF1 complex prevents the spontaneous activation of eggs by deadenylating maternal mRNAs. Open Biology, 2016, 6, 160184.	3.6	61
24	Mechanism of spindle pole organization and instability in human oocytes. Science, 2022, 375, eabj3944.	12.6	55
25	Functions of actin in mouse oocytes at a glance. Journal of Cell Science, 2018, 131, .	2.0	45
26	Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nature Communications, 2016, 7, 13726.	12.8	43
27	Phase Separation during Germline Development. Trends in Cell Biology, 2021, 31, 254-268.	7.9	41
28	Two mechanisms drive pronuclear migration in mouse zygotes. Nature Communications, 2021, 12, 841.	12.8	38
29	Origins and mechanisms leading to aneuploidy in human eggs. Prenatal Diagnosis, 2021, 41, 620-630.	2.3	33
30	Aneuploidy in human eggs: contributions of the meiotic spindle. Biochemical Society Transactions, 2021, 49, 107-118.	3.4	31
31	The Phosphatase Dusp7 Drives Meiotic Resumption and Chromosome Alignment in Mouse Oocytes. Cell Reports, 2016, 17, 1426-1437.	6.4	18
32	The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes. Nature Communications, 2020, 11, 2598.	12.8	16
33	Error-Prone Chromosome-Mediated Spindle Assembly Favors Chromosome Segregation Defects in Human Oocytes. Obstetrical and Gynecological Survey, 2015, 70, 572-573.	0.4	6
34	Nuclear Envelope Breakdown: Actin' Quick to Tear Down the Wall. Current Biology, 2014, 24, R605-R607.	3.9	5
35	Actin Disassembly: How to Contract without Motors?. Current Biology, 2018, 28, R275-R277.	3.9	2
36	Double trouble at the beginning of life. Science, 2018, 361, 128-129.	12.6	2

3

#	Article	IF	CITATIONS
37	A microscopy-based approach for studying meiosis in live and fixed human oocytes. Methods in Cell Biology, 2018, 145, 315-333.	1.1	2
38	Taking a confident leap into uncertainty. Nature Cell Biology, 2018, 20, 1007-1007.	10.3	0