Robert Pola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193141/publications.pdf

Version: 2024-02-01

		393982	344852
35	1,595	19	36
papers	citations	h-index	g-index
37	37	37	3032
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines. Journal of Personalized Medicine, 2022, 12, 698.	1.1	O
2	Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomaterialia, 2021, 119, 349-359.	4.1	7
3	Acid-responsive HPMA copolymer-bradykinin conjugate enhances tumor-targeted delivery of nanomedicine. Journal of Controlled Release, 2021, 337, 546-556.	4.8	11
4	Tumor Marker B7-H6 Bound to the Coiled Coil Peptide-Polymer Conjugate Enables Targeted Therapy by Activating Human Natural Killer Cells. Biomedicines, 2021, 9, 1597.	1.4	2
5	Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics, 2020, 12, 31.	2.0	12
6	"Clickable―and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‧pecific Cell Attachment. Macromolecular Bioscience, 2020, 20, e1900354.	2.1	27
7	Polymer Cancerostatics Containing Cell-Penetrating Peptides: Internalization Efficacy Depends on Peptide Type and Spacer Length. Pharmaceutics, 2020, 12, 59.	2.0	12
8	Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Theranostics, 2020, 10, 1948-1959.	4.6	30
9	Liver fibrosis affects the targeting properties of drug delivery systems to macrophage subsets in vivo. Biomaterials, 2019, 206, 49-60.	5.7	22
10	Polymer Cancerostatics Targeted by Recombinant Antibody Fragments to GD2-Positive Tumor Cells. Biomacromolecules, 2019, 20, 412-421.	2.6	11
11	Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. Journal of Controlled Release, 2018, 282, 25-34.	4.8	29
12	Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromolecular Bioscience, 2018, 18, 1700173.	2.1	9
13	Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting. RSC Advances, 2018, 8, 21679-21689.	1.7	6
14	Targeting distinct myeloid cell populations inÂvivo using polymers, liposomes and microbubbles. Biomaterials, 2017, 114, 106-120.	5.7	63
15	Passive Tumor Targeting of Polymer Therapeutics: In Vivo Imaging of Both the Polymer Carrier and the Enzymatically Cleavable Drug Model. Macromolecular Bioscience, 2016, 16, 1577-1582.	2.1	6
16	Biodegradable Multiblock Polymers Based on <i>N</i> à€(2â€Hydroxypropyl)methacrylamide Designed as Drug Carriers for Tumorâ€Targeted Delivery. Macromolecular Chemistry and Physics, 2016, 217, 1690-1703.	1.1	8
17	Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. Journal of Materials Chemistry B, 2016, 4, 7620-7629.	2.9	14
18	The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. Journal of Controlled Release, 2016, 223, 1-10.	4.8	38

#	Article	IF	CITATIONS
19	Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules, 2015, 16, 2493-2505.	2.6	37
20	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nature Biotechnology, 2015, 33, 1201-1210.	9.4	362
21	Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Letters, 2014, 14, 972-981.	4.5	272
22	Coiled Coil Peptides and Polymer–Peptide Conjugates: Synthesis, Self-Assembly, Characterization and Potential in Drug Delivery Systems. Biomacromolecules, 2014, 15, 2590-2599.	2.6	36
23	Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. Journal of Controlled Release, 2014, 182, 83-89.	4.8	83
24	Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers. Polymer Chemistry, 2014, 5, 1340-1350.	1.9	34
25	Avidin-conjugated polymers with monobiotinylated antibody fragments: A new strategy for the noncovalent attachment of recombinant proteins for polymer therapeutics. Journal of Bioactive and Compatible Polymers, 2013, 28, 289-299.	0.8	6
26	The coiled coil motif in polymer drug delivery systems. Biotechnology Advances, 2013, 31, 90-96.	6.0	28
27	Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules, 2013, 14, 881-889.	2.6	36
28	Noninvasive Optical Imaging of Nanomedicine Biodistribution. ACS Nano, 2013, 7, 252-262.	7. 3	102
29	Polymer Carriers for Anticancer Drugs Targeted to EGF Receptor. Macromolecular Bioscience, 2012, 12, 1714-1720.	2.1	18
30	Coiled Coil Peptides as Universal Linkers for the Attachment of Recombinant Proteins to Polymer Therapeutics. Biomacromolecules, 2011, 12, 3645-3655.	2.6	48
31	Multi-component Polymeric System for Tumour Cell-Specific Gene Delivery Using a Universal Bungarotoxin Linker. Pharmaceutical Research, 2010, 27, 2274-2282.	1.7	17
32	HPMA-copolymer conjugates targeted to tumor endothelium using synthetic oligopeptides. Journal of Drug Targeting, 2009, 17, 763-776.	2.1	20
33	Doxorubicin release is not a prerequisite for the in vitro cytotoxicity of HPMA-based pharmaceuticals: In vitro effect of extra drug-free GlyPheLeuGly sequences. Journal of Controlled Release, 2008, 127, 110-120.	4.8	26
34	Polymerâ€"Doxorubicin Conjugate with a Synthetic Peptide Ligand Targeted on Prostate Tumor. Journal of Bioactive and Compatible Polymers, 2007, 22, 602-620.	0.8	15
35	Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. Journal of Controlled Release, 2005, 110, 103-118.	4.8	125