
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7193048/publications.pdf Version: 2024-02-01

ODEN RECEV

#	Article	IF	CITATIONS
1	Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Letters, 2002, 2, 25-28.	4.5	700
2	Toolbox for Dispersing Carbon Nanotubes into Polymers To Get Conductive Nanocomposites. Chemistry of Materials, 2006, 18, 1089-1099.	3.2	496
3	Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects. Chemistry of Materials, 2015, 27, 2100-2106.	3.2	488
4	Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology. Advanced Materials, 2004, 16, 248-251.	11.1	342
5	Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases. Langmuir, 1998, 14, 602-610.	1.6	255
6	Vesicle Formation and General Phase Behavior in the Catanionic Mixture SDSâ^'DDABâ^'Water. The Anionic-Rich Side. Journal of Physical Chemistry B, 1998, 102, 6746-6758.	1.2	236
7	Time-Dependent Study of the Exfoliation Process of Carbon Nanotubes in Aqueous Dispersions by Using UVâ^'Visible Spectroscopy. Analytical Chemistry, 2005, 77, 5135-5139.	3.2	223
8	Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides. Advanced Materials, 2015, 27, 2996-3001.	11.1	213
9	Determination of the Concentration of Single-Walled Carbon Nanotubes in Aqueous Dispersions Using UVâ^Visible Absorption Spectroscopy. Analytical Chemistry, 2006, 78, 8098-8104.	3.2	198
10	Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. Microporous and Mesoporous Materials, 1999, 33, 149-163.	2.2	170
11	Vesicle Formation and General Phase Behavior in the Catanionic Mixture SDSâ dDABâ Water. The Cationic-Rich Side. Journal of Physical Chemistry B, 1999, 103, 8353-8363.	1.2	153
12	Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices. ACS Applied Materials & Interfaces, 2015, 7, 23725-23730.	4.0	151
13	Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. Ultramicroscopy, 2005, 104, 160-167.	0.8	146
14	A study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites, 1996, 17, 447-456.	0.9	129
15	Graphiteâ€toâ€Graphene: Total Conversion. Advanced Materials, 2017, 29, 1603528.	11.1	117
16	Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Composites Part B: Engineering, 2019, 161, 68-76.	5.9	113
17	Interactions between Catanionic Vesicles and Oppositely Charged PolyelectrolytesPhase Behavior and Phase Structure. Macromolecules, 1999, 32, 6626-6637.	2.2	107
18	Alkyl Chain Symmetry Effects in Mixed Cationic–Anionic Surfactant Systems. Journal of Colloid and Interface Science, 1996, 182, 95-109.	5.0	100

#	Article	IF	CITATIONS
19	Aggregation Behavior of Tyloxapol, a Nonionic Surfactant Oligomer, in Aqueous Solution. Journal of Colloid and Interface Science, 1999, 210, 8-17.	5.0	97
20	Carbon nanotubes as nanocarriers in medicine. Current Opinion in Colloid and Interface Science, 2012, 17, 360-368.	3.4	97
21	Nucleation Events during the Synthesis of Mesoporous Materials Using Liquid Crystalline Templating. Langmuir, 1996, 12, 4940-4944.	1.6	95
22	Preparation and Characterization of a Carbon Nanotubeâ^'Lyotropic Liquid Crystal Composite. Langmuir, 2006, 22, 854-856.	1.6	91
23	Fracture behavior of nanotube–polymer composites: Insights on surface roughness and failure mechanism. Composites Science and Technology, 2013, 87, 157-163.	3.8	91
24	Enormous Concentration-Induced Growth of Polymer-like Micelles. Langmuir, 1996, 12, 2894-2899.	1.6	90
25	Precursors of the zeolite ZSM-5 imaged by Cryo-TEM and analyzed by SAXS. Zeolites, 1994, 14, 314-319.	0.9	89
26	Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. Journal of Controlled Release, 2012, 160, 339-345.	4.8	87
27	Dispersing Carbon Nanotubes with Ionic Surfactants under Controlled Conditions: Comparisons and Insight. Langmuir, 2015, 31, 10955-10965.	1.6	86
28	Graphene nanoribbon – Polymer composites: The critical role of edge functionalization. Carbon, 2016, 99, 444-450.	5.4	83
29	Inorganic Nanoparticle Thin Film that Suppresses Flammability of Polyurethane with only a Single Electrostatically-Assembled Bilayer. ACS Applied Materials & Interfaces, 2014, 6, 16903-16908.	4.0	82
30	Transient Fibril Structures Facilitating Nonenzymatic Self-Replication. ACS Nano, 2012, 6, 7893-7901.	7.3	79
31	Evidence for Vesicle Formation during the Synthesis of Catanionic Templated Mesoscopically Ordered Silica as Studied by Cryo-TEM. Journal of the American Chemical Society, 2003, 125, 652-653.	6.6	75
32	Critical parameters in exfoliating graphite into graphene. Physical Chemistry Chemical Physics, 2013, 15, 4428.	1.3	72
33	Graphene Quantum Dots Produced by Microfluidization. Chemistry of Materials, 2016, 28, 21-24.	3.2	71
34	pH Effects On BSA-Dispersed Carbon Nanotubes Studied by Spectroscopy-Enhanced Composition Evaluation Techniques. Analytical Chemistry, 2008, 80, 4049-4054.	3.2	69
35	Gold Nanoparticles Spontaneously Generated in Onion-Type Multilamellar Vesicles. Bilayersâ~'Particle Coupling Imaged by Cryo-TEM. Chemistry of Materials, 2004, 16, 5280-5285.	3.2	64
36	Characterization of Graphene-Nanoplatelets Structure via Thermogravimetry. Analytical Chemistry, 2015, 87, 4076-4080.	3.2	61

#	Article	IF	CITATIONS
37	Improving the Gas Barrier Property of Clay–Polymer Multilayer Thin Films Using Shorter Deposition Times. ACS Applied Materials & Interfaces, 2014, 6, 6040-6048.	4.0	60
38	The critical role of nanotube shape in cement composites. Cement and Concrete Composites, 2016, 71, 166-174.	4.6	60
39	Performance of nano-carbon loaded polymer composites: Dimensionality matters. Carbon, 2018, 126, 410-418.	5.4	59
40	Weak polyelectrolyte control of carbon nanotube dispersion in water. Journal of Colloid and Interface Science, 2008, 317, 346-349.	5.0	57
41	Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon, 2020, 163, 333-340.	5.4	55
42	Breaking through the Solid/Liquid Processability Barrier: Thermal Conductivity and Rheology in Hybrid Graphene–Graphite Polymer Composites. ACS Applied Materials & Interfaces, 2017, 9, 7556-7564.	4.0	51
43	Polymer-Induced Structural Effects on Catanionic Vesicles: Formation of Faceted Vesicles, Disks, and Cross-links. Langmuir, 1999, 15, 642-645.	1.6	49
44	The multiple roles of a dispersant in nanocomposite systems. Composites Science and Technology, 2016, 133, 192-199.	3.8	49
45	A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature Communications, 2017, 8, 14018.	5.8	49
46	Hierarchically Ordered Cadmium Sulfide Nanowires Dispersed in Aqueous Solution. Chemistry of Materials, 2005, 17, 3281-3287.	3.2	47
47	Chiroptical Activity in Silver Cholate Nanostructures Induced by the Formation of Nanoparticle Assemblies. Journal of Physical Chemistry C, 2013, 117, 22240-22244.	1.5	47
48	The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Construction and Building Materials, 2020, 232, 117141.	3.2	47
49	Surfactant–Polymer Interactions: Phase Diagram and Fusion of Vesicle in the Didodecyldimethylammonium Bromide–Poly(ethylene oxide)–Water System. Journal of Colloid and Interface Science, 1998, 200, 19-30.	5.0	46
50	Shape Changes of C16TABr Micelles on Benzene Solubilization. Journal of Physical Chemistry B, 1999, 103, 9631-9639.	1.2	46
51	Cardinal Role of Intraliposome Doxorubicin-Sulfate Nanorod Crystal in Doxil Properties and Performance. ACS Omega, 2018, 3, 2508-2517.	1.6	46
52	Cryo-TEM and NMR Studies of Solution Microstructures of Double-Tailed Surfactant Systems: Didodecyldimethylammonium Hydroxide, Acetate, and Sulfate. The Journal of Physical Chemistry, 1994, 98, 6619-6625.	2.9	45
53	Directing Silver Nanoparticles into Colloidâ^'Surfactant Lyotropic Lamellar Systems. Journal of Physical Chemistry B, 1999, 103, 5613-5621.	1.2	42
54	Exploring a Nanotube Dispersion Mechanism with Gold‣abeled Proteins via Cryoâ€TEM Imaging. Small, 2007, 3, 1894-1899.	5.2	42

#	Article	IF	CITATIONS
55	Graphene-induced enhancement of water vapor barrier in polymer nanocomposites. Composites Part B: Engineering, 2018, 134, 218-224.	5.9	40
56	The in situ phase transitions occurring during bicontinuous cubic phase formation. Microporous and Mesoporous Materials, 2000, 38, 413-421.	2.2	39
57	"Shaken, Not Stableâ€: Dispersion Mechanism and Dynamics of Protein-Dispersed Nanotubes Studied via Spectroscopy. Langmuir, 2009, 25, 10459-10465.	1.6	39
58	Protein Dispersant Binding on Nanotubes Studied by NMR Self-Diffusion and Cryo-TEM Techniques. Journal of Physical Chemistry Letters, 2010, 1, 1414-1419.	2.1	39
59	Graphite-based shape-stabilized composites for phase change material applications. Renewable Energy, 2021, 167, 580-590.	4.3	39
60	Micelles, Dispersions, and Liquid Crystals in the Catanionic Mixture Bile Saltâ^'Double-Chained Surfactant. The Bile Salt-Rich Area. Langmuir, 2000, 16, 8255-8262.	1.6	38
61	Phase Behavior and Shear Alignment in SWNT‣urfactant Dispersions. Small, 2008, 4, 1459-1467.	5.2	38
62	Polymer Binding to Carbon Nanotubes in Aqueous Dispersions: Residence Time on the Nanotube Surface As Obtained by NMR Diffusometry. Journal of Physical Chemistry B, 2012, 116, 2635-2642.	1.2	38
63	Dynamic light scattering and cryogenic transmission electron microscopy investigations on metallo-supramolecular aqueous micelles: evidence of secondary aggregation. Colloid and Polymer Science, 2004, 282, 407-411.	1.0	37
64	pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves. Physical Chemistry Chemical Physics, 2013, 15, 7560.	1.3	37
65	Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. International Journal of Pharmaceutics, 2018, 547, 648-655.	2.6	37
66	Phase transitions in O/W lauryl acrylate emulsions during phase inversion, studied by light microscopy and cryo-TEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 19-25.	2.3	36
67	Top-Down, Scalable Graphene Sheets Production: It Is All about the Precipitate. Chemistry of Materials, 2017, 29, 9998-10006.	3.2	36
68	Characterization of microencapsulated liposome systems for the controlled delivery of liposome-associated macromolecules. Journal of Controlled Release, 1997, 43, 35-45.	4.8	34
69	Hydrogen storage and spillover kinetics in carbon nanotube-Mg composites. International Journal of Hydrogen Energy, 2016, 41, 2814-2819.	3.8	32
70	Hydrogen storage kinetics: The graphene nanoplatelet size effect. Carbon, 2018, 130, 369-376.	5.4	32
71	Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling. Journal of Colloid and Interface Science, 2019, 547, 69-77.	5.0	32
72	A simple solution for the determination of pristine carbon nanotube concentration. Analyst, The, 2013, 138, 1490.	1.7	30

#	Article	IF	CITATIONS
73	Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. Polymer, 2018, 153, 52-60.	1.8	29

Phase Behavior and Characterization of Micellar and Cubic Phases in the Nonionic Surfactant C〈17〉E〈84〉/Water System. A PFG NMR, SAXS, Cryo-TEM, and Fluorescence Study. Langmuir, 1998,14, 5730-5739. 74

75	On the fate of carbon nanotubes: Morphological characterisations. Composites Science and Technology, 2007, 67, 783-788.	3.8	25
76	About morphology in ethylene–propylene(-diene) copolymers-based latexes. Polymer, 2005, 46, 7094-7108.	1.8	24
77	Shear-induced ordering of micellar arrays in the presence of single-walled carbon nanotubes. Chemical Communications, 2008, , 2037.	2.2	24
78	A Cryo-TEM Study of Protein–Surfactant Gels and Solutions. Journal of Colloid and Interface Science, 2000, 222, 170-178.	5.0	23
79	Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity. Langmuir, 2018, 34, 13672-13679.	1.6	23
80	Optimal nanomaterial concentration: harnessing percolation theory to enhance polymer nanocomposite performance. Nanotechnology, 2017, 28, 305701.	1.3	22
81	Graphene and boron nitride nanoplatelets for improving vapor barrier properties in epoxy nanocomposites. Progress in Organic Coatings, 2019, 136, 105207.	1.9	22
82	Carbon Allotropes Accelerate Hydrogenation via Spillover Mechanism. Journal of Physical Chemistry C, 2014, 118, 27164-27169.	1.5	21
83	Preparation and characterization of a double filler polymeric nanocomposite. Composites Science and Technology, 2007, 67, 895-899.	3.8	20
84	Lateral Diffusion of Dispersing Molecules on Nanotubes As Probed by NMR. Journal of Physical Chemistry C, 2014, 118, 582-589.	1.5	20
85	Tuning Mg hydriding kinetics with nanocarbons. Journal of Alloys and Compounds, 2017, 725, 616-622.	2.8	20
86	Enhancing the Immunogenicity of Liposomal Hepatitis B Surface Antigen (HBsAg) By Controlling Its Delivery From polymeric Microspheres. Journal of Pharmaceutical Sciences, 2000, 89, 1550-1557.	1.6	19
87	Synergetic effect of ultrasound and sodium dodecyl sulphate in the formation of CdS nanostructures in aqueous solution. Ultrasonics Sonochemistry, 2007, 14, 398-404.	3.8	19
88	Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition. Nanotechnology, 2015, 26, 185703.	1.3	19
89	WS2 nanotube – Reinforced cement: Dispersion matters. Construction and Building Materials, 2015, 98, 112-118.	3.2	19
90	Surface Coverage and Competitive Adsorption on Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 22190-22197.	1.5	19

#	Article	IF	CITATIONS
91	Dispersing Carbon Nanotubes in Water with Amphiphiles: Dispersant Adsorption, Kinetics, and Bundle Size Distribution as Defining Factors. Journal of Physical Chemistry C, 2018, 122, 24386-24393.	1.5	19
92	Transferable Thin Films of Mesoporous Silica. Chemistry of Materials, 2003, 15, 3619-3624.	3.2	16
93	Enhancing thermal conductivity in graphene-loaded paint: Effects of phase change, rheology and filler size. International Journal of Thermal Sciences, 2020, 153, 106381.	2.6	15
94	Mixed dimensionality: Highly robust and multifunctional carbon-based composites. Carbon, 2021, 176, 339-348.	5.4	15
95	Molten salt in-situ exfoliation of graphite to graphene nanoplatelets applied for energy storage. Carbon, 2021, 176, 168-177.	5.4	14
96	Cryo-staining techniques in cryo-TEM studies of dispersed nanotubes. Ultramicroscopy, 2010, 110, 751-757.	0.8	13
97	Diameter-selective dispersion of carbon nanotubes by β-lactoglobulin whey protein. Colloids and Surfaces B: Biointerfaces, 2013, 112, 16-22.	2.5	13
98	Graphene–graphite hybrid epoxy composites with controllable workability for thermal management. Beilstein Journal of Nanotechnology, 2019, 10, 95-104.	1.5	13
99	Worm-Like Soft Nanostructures in Nonionic Systems: Principles, Properties and Application as Templates. Journal of Nanoscience and Nanotechnology, 2013, 13, 4497-4520.	0.9	12
100	Distinguishing Self-Assembled Pyrene Structures from Exfoliated Graphene. Langmuir, 2016, 32, 10699-10704.	1.6	12
101	PS/CTAB/silica composites from room temperature polymerization of high internal phase emulsion gels. Journal of Colloid and Interface Science, 2015, 451, 161-169.	5.0	11
102	Low-temperature polymerization of methyl methacrylate emulsion gels through surfactant catalysis. Journal of Colloid and Interface Science, 2016, 461, 128-135.	5.0	11
103	Preparation and characterization of a novel pyrrole-benzophenone copolymerized silica nanocomposite as a reagent in a visual immunologic-agglutination test. Talanta, 2008, 75, 1324-1331.	2.9	9
104	Thermal conductivity improvement of electrically nonconducting composite materials. Reviews in Chemical Engineering, 2012, 28, .	2.3	9
105	Can carbon nanotube–liposome conjugates address the issues associated with carbon nanotubes in drug delivery?. Future Medicinal Chemistry, 2013, 5, 503-505.	1.1	9
106	Solid-state solvent-free catalyzed hydrogenation: Enhancing reaction efficiency by spillover agents. Journal of Molecular Catalysis A, 2013, 376, 48-52.	4.8	9
107	Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. Journal of Colloid and Interface Science, 2017, 493, 398-404.	5.0	9
108	Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets. Journal of Molecular Liquids, 2021, 333, 116002.	2.3	9

#	Article	IF	CITATIONS
109	Filler dimensionality effect on the performance of paraffin-based phase change materials. Journal of Colloid and Interface Science, 2022, 627, 587-595.	5.0	9
110	Catanionic Vesicleâ ''PEGâ ''Lipid System:Â Langmuir Film and Phase Diagram Study. Langmuir, 2002, 18, 5681-5686.	1.6	8
111	Textile-reinforced mortar: Durability in salty environment. Cement and Concrete Composites, 2022, 130, 104534.	4.6	8
112	Templating nanostructures by mesoporous materials with an emphasis on room temperature and cryogenic TEM studies. Current Opinion in Colloid and Interface Science, 2005, 10, 280-286.	3.4	6
113	Textile-cement bond enhancement: Sprinkle some hydrophilic powder. Cement and Concrete Composites, 2021, 120, 104031.	4.6	6
114	Hierarchical multi-step organization during viral capsid assembly. Colloids and Surfaces B: Biointerfaces, 2015, 136, 674-677.	2.5	5
115	Short and Soft: Multidomain Organization, Tunable Dynamics, and Jamming in Suspensions of Grafted Colloidal Cylinders with a Small Aspect Ratio. Langmuir, 2019, 35, 17103-17113.	1.6	5
116	Vegetable-Oil-Based Intelligent Ink for Oxygen Sensing. ACS Sensors, 2020, 5, 3274-3280.	4.0	5
117	Catalyst Surface Dispersion: Insights into Hydrogenation Kinetics and Mechanism. Journal of Physical Chemistry C, 2020, 124, 8813-8821.	1.5	5
118	Enhancement of fabric–mortar interfacial adhesion by particle decoration: insights from pull-off measurements. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	5
119	Down the Dimensionality Lane: Thermal Conductivity Enhancement in Carbon-Based Liquid Dispersions. ACS Applied Materials & Interfaces, 2022, 14, 9844-9854.	4.0	5
120	Trapped and Alone: Clay-Assisted Aqueous Graphene Dispersions. ACS Applied Materials & Interfaces, 2021, 13, 6879-6888.	4.0	4
121	Mixed surfactants: Sodium bis(2-ethyl-hexyl)sulphosuccinate- didodecyldimethyl-ammonium bromide- water system. , 1994, , 146-150.		3
122	Disperse-and-Mix: Oil as an â€~Entrance Door' of Carbon-Based Fillers to Rubber Composites. Nanomaterials, 2021, 11, 3048.	1.9	3
123	Cement Reinforcement by Nanotubes. , 2015, , 231-237.		2
124	Utilizing Old Egyptian Wisdom for Stabilization of Individual Carbon Nanotubes in Aqueous Dispersions. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
125	Sensing Exposure Time to Oxygen by Applying a Percolation-Induced Principle. Sensors, 2020, 20, 4465.	2.1	1
126	Enhancing the immunogenicity of liposomal hepatitis B surface antigen (HBsAg) by controlling its delivery from polymeric microspheres. Journal of Pharmaceutical Sciences, 2000, 89, 1550-1557.	1.6	0

#	Article	IF	CITATIONS
127	Effects of Filler Size and Crystallinity on Thermal Performance and Flammability of Polymer Nanocomposites. , 2021, , 1-16.		0