
Ana P Mucha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7192912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution, 2003, 121, 169-180.	3.7	288
2	Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Science of the Total Environment, 2017, 581-582, 359-368.	3.9	130
3	Influence of the Sea RushJuncus maritimuson Metal Concentration and Speciation in Estuarine Sediment Colonized by the Plant. Environmental Science & Technology, 2004, 38, 3112-3118.	4.6	118
4	Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresource Technology, 2015, 182, 26-33.	4.8	102
5	Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresource Technology, 2013, 134, 412-416.	4.8	88
6	Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine, Coastal and Shelf Science, 2005, 65, 191-198.	0.9	84
7	Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW) Tj ETQq1 1 0.7843	14 rgBT /C	verlock 10
8	Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environmental Pollution, 2006, 142, 151-159.	3.7	81
9	Can PAHs influence Cu accumulation by salt marsh plants?. Marine Environmental Research, 2008, 66, 311-318.	1.1	68
10	Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. Science of the Total Environment, 2019, 648, 962-972.	3.9	65
11	Vertical distribution of the macrobenthic community and its relationships to trace metals and natural sediment characteristics in the lower Douro estuary, Portugal. Estuarine, Coastal and Shelf Science, 2004, 59, 663-673.	0.9	64
12	Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Science of the Total Environment, 2013, 458-460, 568-576.	3.9	63
13	Removal of veterinary antibiotics in constructed wetland microcosms – Response of bacterial communities. Ecotoxicology and Environmental Safety, 2019, 169, 894-901.	2.9	56
14	Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal). Marine Environmental Research, 2005, 60, 531-550.	1.1	53
15	Pharmaceutical Compounds in Aquatic Environments—Occurrence, Fate and Bioremediation Prospective. Toxics, 2021, 9, 257.	1.6	52
16	Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater. Ecological Engineering, 2019, 129, 45-53.	1.6	49
17	Silver nanoparticles uptake by salt marsh plants – Implications for phytoremediation processes and effects in microbial community dynamics. Marine Pollution Bulletin, 2017, 119, 176-183.	2.3	48
18	Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation. Chemosphere, 2018, 199, 54-67.	4.2	46

ΑΝΑ Ρ Μυςμα

#	Article	IF	CITATIONS
19	LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination. Estuarine, Coastal and Shelf Science, 2010, 88, 63-70.	0.9	41
20	Variability of metal contents in the sea rush Juncus maritimus–estuarine sediment system through one year of plant's life. Marine Environmental Research, 2006, 61, 424-438.	1.1	38
21	Interactions between salt marsh plants and Cu nanoparticles – Effects on metal uptake and phytoremediation processes. Ecotoxicology and Environmental Safety, 2015, 120, 303-309.	2.9	38
22	Potential of Constructed Wetlands for Removal of Antibiotics from Saline Aquaculture Effluents. Water (Switzerland), 2016, 8, 465.	1.2	38
23	Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere, 2009, 75, 135-140.	4.2	36
24	Deltamethrin impact in a cabbage planted soil: Degradation and effect on microbial community structure. Chemosphere, 2019, 220, 1179-1186.	4.2	35
25	Macrozoobenthic community structure in two Portuguese estuaries: Relationship with organic enrichment and nutrient gradients. Acta Oecologica, 1999, 20, 363-376.	0.5	34
26	Salt marsh plants (Juncus maritimus and Scirpus maritimus) as sources of strong complexing ligands. Estuarine, Coastal and Shelf Science, 2008, 77, 104-112.	0.9	34
27	Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments. Science of the Total Environment, 2008, 403, 188-195.	3.9	34
28	Potential of bioremediation for buried oil removal in beaches after an oil spill. Marine Pollution Bulletin, 2013, 76, 258-265.	2.3	34
29	Sediment quality in the Douro river estuary based on trace metal contents, macrobenthic community and elutriate sediment toxicity test (ESTT). Journal of Environmental Monitoring, 2004, 6, 585.	2.1	33
30	Potential of the microbial community present in an unimpacted beach sediment to remediate petroleum hydrocarbons. Environmental Science and Pollution Research, 2013, 20, 3176-3184.	2.7	32
31	Microbial degradation of two highly persistent fluorinated fungicides - epoxiconazole and fludioxonil. Journal of Hazardous Materials, 2020, 394, 122545.	6.5	32
32	Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Science of the Total Environment, 2014, 493, 757-765.	3.9	31
33	Constructed wetlands for the removal of metals from livestock wastewater – Can the presence of veterinary antibiotics affect removals?. Ecotoxicology and Environmental Safety, 2017, 137, 143-148.	2.9	31
34	Hydrocarbon degradation potential of salt marsh plant–microorganisms associations. Biodegradation, 2011, 22, 729-739.	1.5	30
35	Can veterinary antibiotics affect constructed wetlands performance during treatment of livestock wastewater?. Ecological Engineering, 2017, 102, 583-588.	1.6	30
36	Revisiting pesticide pollution: The case of fluorinated pesticides. Environmental Pollution, 2022, 292, 118315.	3.7	29

ΑΝΑ Ρ Μυςμα

#	Article	IF	CITATIONS
37	Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Biodegradation, 2013, 24, 111-123.	1.5	27
38	Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments. Journal of Environmental Management, 2014, 137, 10-15.	3.8	27
39	Sandy Beaches as Biogeochemical Hotspots: The Metabolic Role of Macroalgal Wrack on Low-productive Shores. Ecosystems, 2019, 22, 49-63.	1.6	27
40	The Role of a Salt Marsh Plant on Trace Metal Bioavailability in Sediments. Estimation By Different Chemical Approaches * (7 pp). Environmental Science and Pollution Research, 2005, 12, 271-277.	2.7	26
41	Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Science of the Total Environment, 2017, 581-582, 801-810.	3.9	26
42	Comparison of the response of three microalgae species exposed to elutriates of estuarine sediments based on growth and chemical speciation. Environmental Toxicology and Chemistry, 2003, 22, 576-585.	2.2	25
43	Response of a salt marsh microbial community to metal contamination. Estuarine, Coastal and Shelf Science, 2013, 130, 81-88.	0.9	25
44	A strategy to potentiate Cd phytoremediation by saltmarsh plants – Autochthonous bioaugmentation. Journal of Environmental Management, 2014, 134, 136-144.	3.8	25
45	SARS-CoV-2 RNA detected in urban wastewater from Porto, Portugal: Method optimization and continuous 25-week monitoring. Science of the Total Environment, 2021, 792, 148467.	3.9	25
46	Salt marsh plant–microorganism interaction in the presence of mixed contamination. International Biodeterioration and Biodegradation, 2011, 65, 326-333.	1.9	23
47	Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuarine, Coastal and Shelf Science, 2014, 141, 78-84.	0.9	23
48	Differential effects of crude oil on denitrification and anammox, and the impact on N2O production. Environmental Pollution, 2016, 216, 391-399.	3.7	21
49	Indigenous microbial communities along the NW Portuguese Coast: Potential for hydrocarbons degradation and relation with sediment contamination. Marine Pollution Bulletin, 2018, 131, 620-632.	2.3	21
50	Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. International Journal of Environmental Research and Public Health, 2020, 17, 8592.	1.2	21
51	Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides. Estuarine, Coastal and Shelf Science, 2009, 85, 627-632.	0.9	20
52	Influence of natural rhizosediments characteristics on hydrocarbons degradation potential of microorganisms associated to Juncus maritimus roots. International Biodeterioration and Biodegradation, 2013, 84, 86-96.	1.9	20
53	Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms, 2020, 8, 1691.	1.6	20
54	Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Frontiers in Microbiology, 2021, 12, 633659.	1.5	20

ANA P MUCHA

#	Article	IF	CITATIONS
55	Bioremediation of bezafibrate and paroxetine by microorganisms from estuarine sediment and activated sludge of an associated wastewater treatment plant. Science of the Total Environment, 2019, 655, 796-806.	3.9	19
56	Applicability of ecological assessment tools for management decision-making: A case study from the Lima estuary (NW Portugal). Ocean and Coastal Management, 2013, 72, 54-63.	2.0	17
57	Microbial community dynamics in a hatchery recirculating aquaculture system (RAS) of sole (Solea) Tj ETQq1 1	0.784314 1.7	rgBT_/Overloc
58	Response of a salt marsh microbial community to antibiotic contamination. Science of the Total Environment, 2015, 532, 301-308.	3.9	16
59	Biodegradation of enrofloxacin by microbial consortia obtained from rhizosediments of two estuarine plants. Journal of Environmental Management, 2019, 231, 1145-1153.	3.8	16
60	Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. Journal of Environmental Chemical Engineering, 2020, 8, 103881.	3.3	16
61	Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill. Environmental Science and Pollution Research, 2014, 21, 3634-3645.	2.7	15
62	Optimization of an Autochthonous Bacterial Consortium Obtained from Beach Sediments for Bioremediation of Petroleum Hydrocarbons. Water (Switzerland), 2021, 13, 66.	1.2	15
63	Microbial communities within saltmarsh sediments: Composition, abundance and pollution constraints. Estuarine, Coastal and Shelf Science, 2012, 99, 145-152.	0.9	13
64	INFLUENCE OF DIFFERENT SALT MARSH PLANTS ON HYDROCARBON DEGRADING MICROORGANISMS ABUNDANCE THROUGHOUT A PHENOLOGICAL CYCLE. International Journal of Phytoremediation, 2013, 15, 715-728.	1.7	13
65	Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS ONE, 2019, 14, e0216882.	1.1	13
66	Floating Wetland Islands Implementation and Biodiversity Assessment in a Port Marina. Water (Switzerland), 2020, 12, 3273.	1.2	11
67	Salt marsh sediment characteristics as key regulators on the efficiency of hydrocarbons bioremediation by Juncus maritimus rhizospheric bacterial community. Environmental Science and Pollution Research, 2015, 22, 450-462.	2.7	10
68	Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria. Microorganisms, 2021, 9, 2285.	1.6	10
69	Response of two salt marsh plants to short- and long-term contamination of sediment with cadmium. Journal of Soils and Sediments, 2015, 15, 722-731.	1.5	8
70	Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments. Marine Environmental Research, 2017, 132, 68-78.	1.1	7
71	Atlas of the microbial degradation of fluorinated pesticides. Critical Reviews in Biotechnology, 2022, 42, 991-1009.	5.1	6
72	Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms, 2021, 9, 2109.	1.6	6

ΑΝΑ Ρ Μυςμα

#	ARTICLE	IF	CITATIONS
73	Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms, 2021, 9, 2389.	1.6	6
74	Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification. Environmental Science and Pollution Research, 2014, 21, 10270-10278.	2.7	5
75	Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. Water (Switzerland), 2021, 13, 715.	1.2	5
76	Complete Genome Sequence of Two Deep-Sea Streptomyces Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential. Marine Drugs, 2021, 19, 621.	2.2	5
77	MarinEye — A tool for marine monitoring. , 2016, , .		4
78	Disentangling the effects of solar radiation, wrack macroalgae and beach macrofauna on associated bacterial assemblages. Marine Environmental Research, 2015, 112, 104-112.	1.1	3
79	The effect of sand composition on the degradation of buried oil. Marine Pollution Bulletin, 2014, 86, 391-401.	2.3	1
80	Constructed Wetlands for Livestock Wastewater Treatment: Antibiotics Removal and Effects on CWs Performance. , 2016, , 267-281.		1
81	Anaerobic Biodegradation of Ethylic and Methylic Biodiesel and Their Impact on Benzene Degradation. Clean - Soil, Air, Water, 2017, 45, 1600264.	0.7	1
82	Evaluation of the Potential of Salt Marsh Plants for Metal Phytoremediation in Estuarine Environment. , 2013, , 225-239.		0
83	Emerging investigator series: prompt response of estuarine denitrifying bacterial communities to copper nanoparticles at relevant environmental concentrations. Environmental Science: Nano, 2021,	2.2	0