Andrew P Grosvenor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7192582/publications.pdf

Version: 2024-02-01

85 papers 9,963 citations

218381 26 h-index 82 g-index

92 all docs 92 docs citations 92 times ranked 16506 citing authors

#	Article	IF	Citations
1	Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257, 2717-2730.	3.1	6,012
2	New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 2006, 600, 1771-1779.	0.8	1,663
3	Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy. Inorganic Chemistry, 2005, 44, 8988-8998.	1.9	415
4	X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides $\langle i \rangle M \langle i \rangle \langle sub \rangle 2 \langle sub \rangle P$ and $\langle i \rangle M \langle i \rangle \langle sub \rangle 3 \langle sub \rangle P$ ($\langle i \rangle M \langle i \rangle = Crâ^3Ni$). Chemistry of Materials, 2008, 20, 7081-7088.	3.2	233
5	Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASESâ,,¢. Surface Science, 2004, 572, 217-227.	0.8	190
6	Examination of the oxidation of iron by oxygen using X-ray photoelectron spectroscopy and QUASESTM. Surface Science, 2004, 565, 151-162.	0.8	116
7	Structure and growth of oxides on polycrystalline nickel surfaces. Surface and Interface Analysis, 2007, 39, 582-592.	0.8	71
8	XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4. Applied Surface Science, 2016, 379, 242-248.	3.1	63
9	Effects of metal substitution in transition-metal phosphides (Ni1â^'xMâ \in 2x)2P (Mâ \in 2 = Cr, Fe, Co) studied by X-ray photoelectron and absorption spectroscopy. Journal of Materials Chemistry, 2009, 19, 6015.	6.7	61
10	Intralayer Cation Ordering in a Brownmillerite Superstructure: Synthesis, Crystal, and Magnetic Structures of Ca ₂ FeCoO ₅ . Chemistry of Materials, 2010, 22, 6008-6020.	3.2	55
11	Analysis of Metal Site Preference and Electronic Structure of Brownmillerite-Phase Oxides $(A < sub > 2 < sub > B < i > a ∈ 2 < i > < sub > (i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i > x < i >$	= Al.) Tj ET	ГQg <u>1</u> 1 0.784։
12	Next-nearest neighbour contributions to P 2p3/2 X-ray photoelectron binding energy shifts of mixed transition-metal phosphides M1â^²xM′xP with the MnP-type structure. Journal of Solid State Chemistry, 2007, 180, 2702-2712.	1.4	49
13	X-ray photoelectron spectroscopy study of the skutteruditesLaFe4Sb12,CeFe4Sb12,CoSb3, andCoP3. Physical Review B, 2006, 74, .	1.1	47
14	Activation energies for the oxidation of iron by oxygen gas and water vapour. Surface Science, 2005, 574, 317-321.	0.8	44
15	XANES and XPS investigations of (TiO ₂) _x (SiO ₂) _{1â^'x} : the contribution of final-state relaxation to shifts in absorption and binding energies. Journal of Materials Chemistry, 2011, 21, 1829-1836.	6.7	44
16	A Structural Investigation of Hydrous and Anhydrous Rare-Earth Phosphates. Inorganic Chemistry, 2016, 55, 9685-9695.	1.9	37
17	X-ray Photoelectron Spectroscopy Study of Rare-Earth Filled Skutterudites LaFe4P12and CeFe4P12. Chemistry of Materials, 2006, 18, 1650-1657.	3.2	32
18	X-ray Spectroscopic Study of the Electronic Structure of Monazite- and Xenotime-Type Rare-Earth Phosphates. Journal of Physical Chemistry C, 2014, 118, 18000-18009.	1.5	32

#	Article	IF	CITATIONS
19	Coordination-Induced Shifts of Absorption and Binding Energies in the SrFe _{1â^^i} System. Journal of Physical Chemistry C, 2010, 114, 19822-19829.	1.5	30
20	Next-nearest neighbour contributions to the XPS binding energies and XANES absorption energies of P and As in transition-metal arsenide phosphides MAs1â^'yPy having the MnP-type structure. Journal of Solid State Chemistry, 2008, 181, 2549-2558.	1.4	29
21	Local and Average Structures and Magnetic Properties of Sr ₂ FeMnO _{5+<i>y</i>} , <i>y</i> = 0.0, 0.5. Comparisons with Ca ₂ FeMnO ₅ and the Effect of the A-Site Cation. Inorganic Chemistry, 2011, 50, 7779-7791.	1.9	27
22	An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites. Journal of Physics Condensed Matter, 2011, 23, 465502.	0.7	27
23	A case for oxygen deficiency in Gd2Ti2â^'xZrxO7 pyrochlore-type oxides. Journal of Alloys and Compounds, 2013, 565, 44-49.	2.8	27
24	Probing the effect of radiation damage on the structure of rare-earth phosphates. Journal of Alloys and Compounds, 2015, 653, 279-289.	2.8	27
25	Examination of CeFe4Sb12 upon exposure to air: Is this material appropriate for use in terrestrial, high-temperature thermoelectric devices?. Journal of Alloys and Compounds, 2010, 505, L6-L9.	2.8	26
26	An X-ray absorption spectroscopic study of the effect of bond covalency on the electronic structure of Gd2Ti2â^2xSnxO7. Physical Chemistry Chemical Physics, 2013, 15, 10477.	1.3	26
27	Effects of bond character on the electronic structure of brownmillerite-phase oxides, $Ca2Ba\in^2 xFe2a^2xO5$ ($Ba\in^2 = Al$, Ga): an X-ray absorption and electron energy loss spectroscopic study. Journal of Materials Chemistry, 2009, 19, 9213.	6.7	24
28	Electronic structure of lanthanum transition-metal oxyarsenides LaMAsO (M= Fe, Co, Ni) and LaFe1 \hat{a} °M \hat{a} \in 2 AsO (M \hat{a} \in 2 = Co, Ni) by X-ray photoelectron and absorption spectroscopy. Solid State Sciences, 2010, 12, 50-58.	1.5	24
29	How temperature influences the stoichiometry of CeTi2O6. Solid State Sciences, 2012, 14, 761-767.	1.5	23
30	Investigation of the Fe K-edge XANES Spectra from Fe $<$ sub $>$ 1 \hat{a}^{-2} $<$ i> $>$ 4 $<$ 1sub $>$ 5a $<$ sub $>$ 6a $<$ sub $>$ 6i $>$ 4 $<$ 1sub $>$ 5bO $<$ sub $>$ 4 $<$ 1sub $>$ 5 Local versus Nonlocal Excitations. Journal of Physical Chemistry A, 2011, 115, 1908-1912.	1.1	22
31	XANES and XPS investigations of the local structure and final-state effects in amorphous metal silicates: (ZrO ₂) _x (TiO ₂) _y (SiO ₂) _{1â^xâ^y} . Physical Chemistry Chemical Physics, 2012, 14, 205-217.	1.3	21
32	An investigation of the Fe and Mo oxidation states in Sr2Fe2â^'xMoxO6 (0.25â $@\frac{1}{2}$ xâ $@\frac{1}{2}$ 1.0) double perovskites X-ray absorption spectroscopy. Journal of Alloys and Compounds, 2012, 537, 323-331.	by 2.8	21
33	Ceria Nanocubes: Dependence of the Electronic Structure on Synthetic and Experimental Conditions. Journal of Physical Chemistry C, 2013, 117, 10095-10105.	1.5	20
34	Synthesis, structure, and magnetic properties of novel B-site ordered double perovskites, SrLaMReO ₆ (M = Mg, Mn, Co and Ni). Dalton Transactions, 2015, 44, 10806-10816.	1.6	20
35	An X-ray absorption spectroscopic study of the metal site preference in Al1â [°] Ga FeO3. Journal of Solid State Chemistry, 2013, 197, 147-153.	1.4	18
36	A study of the electronic structure and structural stability of Gd ₂ Ti ₂ O ₇ based glass-ceramic composites. RSC Advances, 2015, 5, 80939-80949.	1.7	18

#	Article	IF	CITATIONS
37	Low-temperature synthesis of CaZrTi ₂ O ₇ zirconolite-type materials using ceramic, coprecipitation, and sol–gel methods. Journal of Materials Chemistry C, 2019, 7, 177-187.	2.7	17
38	An investigation of pyrochlore-type oxides (Yb2Ti2â^'xFexO7-Î) by XANES. Journal of Physics and Chemistry of Solids, 2013, 74, 830-836.	1.9	16
39	Investigation of the Structural Stability of Ion-Implanted Gd ₂ Ti _{2–<i>x</i>} Sn _{<i>x</i>} O ₇ Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 7910-7922.	1.5	16
40	Analysis of the electronic structure of Hf(Si0.5As0.5)As by X-ray photoelectron and photoemission spectroscopy. Journal of Solid State Chemistry, 2007, 180, 2670-2681.	1.4	14
41	Electronic structure of rare-earth chromium antimonides RECrSb3 (RE=La–Nd, Sm, Gd–Dy, Yb) by X-ray photoelectron spectroscopy. Journal of Solid State Chemistry, 2012, 196, 79-86.	1.4	13
42	Analysis of the Mo Speciation in the JEB Tailings Management Facility at McClean Lake, Saskatchewan. Environmental Science & E	4.6	13
43	Investigation of CeTi ₂ O ₆ - and CaZrTi ₂ O ₇ -containing glass–ceramic composite materials. Canadian Journal of Chemistry, 2017, 95, 1110-1121.	0.6	13
44	Investigating the Geochemical Model for Molybdenum Mineralization in the JEB Tailings Management Facility at McClean Lake, Saskatchewan: An X-ray Absorption Spectroscopy Study. Environmental Science & Echnology, 2015, 49, 6504-6509.	4.6	12
45	Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation. Solid State Sciences, 2017, 74, 109-117.	1.5	12
46	An investigation of the chemical durability of hydrous and anhydrous rare-earth phosphates. Journal of Nuclear Materials, 2018, 509, 631-643.	1.3	12
47	Investigation of coordination changes in substituted transition-metal oxides by K-edge XANES: Beyond the pre-edge. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 192-195.	0.8	11
48	An investigation of the electronic structure and structural stability of RE2Ti2O7 by glancing angle and total electron yield XANES. Journal of Alloys and Compounds, 2014, 616, 516-526.	2.8	11
49	X-ray microprobe characterization of corrosion at the buried polymer-steel interface. Corrosion Science, 2018, 144, 198-206.	3.0	10
50	Shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) studies of steel surface corrosion. Journal of Electroanalytical Chemistry, 2019, 853, 113559.	1.9	10
51	Bonding and Electronic Structure of Phosphides, Arsenides, and Antimonides by X-Ray Photoelectron and Absorption Spectroscopies. Structure and Bonding, 2009, , 41-92.	1.0	9
52	The Effect of Synthetic Method and Annealing Temperature on Metal Site Preference in Al _{1–<i>x</i>} Ga _{<i>x</i>} FeO ₃ . Inorganic Chemistry, 2013, 52, 8612-8620.	1.9	9
53	Ternary arsenides Zr(SixAs1â^'x)As with PbCl2-type (0â‰xâ‰0.4) and PbFCl-type (x=0.6) structures. Journal of Alloys and Compounds, 2010, 492, 19-25.	2.8	8
54	An investigation of the thermal stability of Nd Y Zr1â^'â^'O2â^' inert matrix fuel materials. Journal of Alloys and Compounds, 2015, 635, 245-255.	2.8	8

#	Article	IF	CITATIONS
55	Identifying calcium-containing mineral species in the JEB Tailings Management Facility at McClean Lake, Saskatchewan. Applied Geochemistry, 2016, 73, 98-108.	1.4	8
56	Investigation of the Thermal Stability of Nd _{<i>y</i>} Zr _{1â€"<i>x</i>ê"<i>y</i>} O _{2â^î(} Materials Proposed for Inert Matrix Fuel Applications. Inorganic Chemistry, 2016, 55, 1032-1043.	1.9	7
57	Assessing the oxidation states and structural stability of the Ce analogue of brannerite. Surface and Interface Analysis, 2017, 49, 1335-1344.	0.8	7
58	A one-step synthesis of rare-earth phosphate–borosilicate glass composites. RSC Advances, 2018, 8, 39053-39065.	1.7	7
59	A spectromicroscopy study of the corrosion of polymer coated steel. Corrosion Science, 2018, 145, 35-46.	3.0	7
60	On the Oxidation of EuFe ₄ Sb ₁₂ and EuRu ₄ Sb ₁₂ . Inorganic Chemistry, 2011, 50, 6263-6268.	1.9	6
61	Investigation of Factors That Affect the Oxidation State of Ce in the Garnet-Type Structure. Inorganic Chemistry, 2019, 58, 2299-2306.	1.9	6
62	Crystallization of Rare-Earth Phosphate-Borosilicate Glass Composites Synthesized by a One-Step Coprecipitation Method. Crystal Growth and Design, 2020, 20, 2217-2231.	1.4	6
63	Effect of Synthetic Method and Annealing Temperature on the Structure of Hollandite-Type Oxides. Inorganic Chemistry, 2018, 57, 14353-14361.	1.9	5
64	Bonding and Electronic Structure of Phosphides, Arsenides, and Antimonides by X-Ray Photoelectron and Absorption Spectroscopies. Structure and Bonding, 2009, , 41-92.	1.0	5
65	ARXPS study of the ion mobility through (HfO ₂ 1â^' <i>x</i> + formed on airâ€exposed HfSi _{0.5} As _{1.5} . Surface and Interface Analysis, 2008, 40, 490-494.	0.8	4
66	Determining the effect of Ru substitution on the thermal stability of CeFe4â^xRuxSb12. Solid State Sciences, 2011, 13, 2041-2048.	1.5	4
67	A spectromicroscopy study of the corrosion of fusionâ€bonded epoxy–coated rebar. Surface and Interface Analysis, 2019, 51, 525-530.	0.8	4
68	Quenching of Long Range Order and the Mn ³⁺ Ordered Moment in the Layered Antiferromagnet, Ba _{<i>x</i>} Sr _{1â€"<i>x</i>} LaMnO ₄ . A Polarized Neutron Scattering Study. Inorganic Chemistry, 2019, 58, 4300-4309.	1.9	4
69	Investigating the local structure of B-site cations in (1-x)BaTiO3–xBiScO3 and (1-x)PbTiO3–xBiScO3 using X-ray absorption spectroscopy. Solid State Sciences, 2018, 79, 6-14.	1.5	3
70	Examination of the site preference in garnet type (X3A2B3O12; X=Y, A/B= Al, Ga, Fe) materials. Solid State Sciences, 2018, 83, 56-64.	1.5	3
71	An X-ray spectromicroscopy study of the calcium mineralization in the JEB tailings management facility at McClean Lake, Saskatchewan. Applied Geochemistry, 2020, 112, 104459.	1.4	3
72	Examination of the site preference of metals in NiAl2â^'GaO spinel-type oxides by X-ray absorption near-edge spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 139-144.	0.8	2

#	Article	IF	CITATIONS
73	Soft Xâ€ray spectromicroscopy studies of pitting corrosion of reinforcing steel bar. Surface and Interface Analysis, 2019, 51, 681-691.	0.8	2
74	Structural and magnetic properties of churchite-type REPO4·2H2O materials. Journal of Solid State Chemistry, 2022, 312, 123261.	1.4	2
75	Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M: Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy ChemInform, 2006, 37, no.	0.1	1
76	An investigation of the electronic structure of Cu2FeSn3â^'Ti S8 (0â‰xâ‰3) thiospinel spin-crossover materials by X-ray absorption spectroscopy and electronic structure calculations. Journal of Solid State Chemistry, 2013, 197, 532-542.	1.4	1
77	Investigation of NdxY0.25–xZr0.75O1.88 inert matrix fuel materials made by a co-precipitation synthetic route. Canadian Journal of Chemistry, 2016, 94, 198-210.	0.6	1
78	The Influence of Final-State Effects on XPS Spectra from First-Row Transition-Metals. Springer Series in Surface Sciences, 2016, , 217-262.	0.3	1
79	Effect of glass composition on the crystallization of CePO4–borosilicate glass composite materials. Canadian Journal of Chemistry, 2020, 98, 701-707.	0.6	1
80	Family of anisotropic spin glasses Ba1–xLa1+xMnO4+δ. Physical Review Materials, 2021, 5, .	0.9	1
81	Mixed valence cerium substitution in Gd2-xCexTi2O7+ \hat{l} pyrochlores. Journal of Electron Spectroscopy and Related Phenomena, 2019, 234, 5-12.	0.8	O
82	Analysis of low concentration U species within U mill tailings using X-ray microprobe. Journal of Electron Spectroscopy and Related Phenomena, 2020, 244, 146992.	0.8	0
83	Understanding the Interplay of Vacancy, Cation, and Charge Ordering in the Tunable Sc2VO5+δ Defect Fluorite System. Inorganic Chemistry, 2021, 60, 872-882.	1.9	О
84	Magnetism in Mixed Valence, Defect, Cubic Perovskites: Baln _{1â\in"<i>x</i>y} Fe _{<i>x</i>} O _{2.5+Î'} , <i>x</i> = 0.25, 0.50, and 0.75. Local and Average Structures. ACS Omega, 2021, 6, 6017-6029.	1.6	0
85	A Study of the Corrosion of Polymethyl Methacrylate Coated Rebar Using Glancing Angle X-Ray Absorption Near Edge Spectroscopy. Corrosion, 2021, 77, 1291-1298.	0.5	0