Javier Montenegro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719254/publications.pdf

Version: 2024-02-01

68 papers 2,938 citations

201385 27 h-index 53 g-index

75 all docs

75 docs citations

times ranked

75

3618 citing authors

#	Article	IF	Citations
1	Cyclization and Self-Assembly of. Methods in Molecular Biology, 2022, 2371, 449-466.	0.4	1
2	1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Organic Chemistry Frontiers, 2022, 9, 1226-1233.	2.3	6
3	Bottom-up supramolecular assembly in two dimensions. Chemical Science, 2022, 13, 3057-3068.	3.7	30
4	Glycan shields for penetrating peptides. Chemical Communications, 2022, 58, 1394-1397.	2.2	2
5	Dynamic Nanosurface Reconfiguration by Host-Guest Supramolecular Interactions. Nanoscale, 2022, , .	2.8	2
6	Boron clusters as broadband membrane carriers. Nature, 2022, 603, 637-642.	13.7	62
7	Stronger Together: Multivalent Phage Capsids Inhibit Virus Entry. ChemBioChem, 2021, 22, 478-480.	1.3	3
8	Short oligoalanine helical peptides for supramolecular nanopore assembly and protein cytosolic delivery. RSC Chemical Biology, 2021, 2, 503-512.	2.0	4
9	Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nature Communications, 2021, 12, 6421.	5.8	15
10	1D to 2D Self Assembly of Cyclic Peptides. Journal of the American Chemical Society, 2020, 142, 300-307.	6.6	82
11	Sequence Decoding of 1D to 2D Selfâ€Assembling Cyclic Peptides. Chemistry - A European Journal, 2020, 26, 14765-14770.	1.7	12
12	An Adhesive Peptide from the C-Terminal Domain of α-Synuclein for Single-Layer Adsorption of Nanoparticles onto Substrates. Bioconjugate Chemistry, 2020, 31, 2759-2766.	1.8	3
13	Frontispiece: Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry - A European Journal, 2020, 26, .	1.7	O
14	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie, 2020, 132, 6969-6975.	1.6	11
15	Synthetic Supramolecular Systems in Life-like Materials and Protocell Models. CheM, 2020, 6, 1652-1682.	5 . 8	35
16	Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry - A European Journal, 2020, 26, 7516-7536.	1.7	31
17	Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie - International Edition, 2020, 59, 6902-6908.	7.2	32
18	Supramolecular caging for cytosolic delivery of anionic probes. Chemical Science, 2019, 10, 8930-8938.	3.7	21

#	Article	IF	Citations
19	Monitoring the Formation of Amyloid Oligomers Using Photoluminescence Anisotropy. Journal of the American Chemical Society, 2019, 141, 15605-15610.	6.6	47
20	Self-assembled micro-fibres by oxime connection of linear peptide amphiphiles. Organic and Biomolecular Chemistry, 2019, 17, 1984-1991.	1.5	11
21	Glycosylated Cellâ€Penetrating Peptides (GCPPs). ChemBioChem, 2019, 20, 1400-1409.	1.3	19
22	Messenger RNA delivery by hydrazone-activated polymers. MedChemComm, 2019, 10, 1138-1144.	3.5	11
23	Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. ChemBioChem, 2019, 20, 488-498.	1.3	24
24	pH-Triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horizons, 2018, 3, 391-396.	4.1	60
25	Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules, 2018, 19, 2638-2649.	2.6	28
26	Novel Supramolecular Nanoparticles Derived from Cucurbit[7]uril and Zwitterionic Surfactants. Langmuir, 2018, 34, 3485-3493.	1.6	5
27	Glycosyl Aldehydes: New Scaffolds for the Synthesis of Neoglycoconjugates via Bioorthogonal Oxime Bond Formation. Synthesis, 2018, 50, 831-845.	1.2	11
28	Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry - A European Journal, 2018, 24, 10689-10698.	1.7	17
29	Synthetic materials at the forefront of gene delivery. Nature Reviews Chemistry, 2018, 2, 258-277.	13.8	215
30	Oligoalanine helical callipers for cell penetration. Chemical Communications, 2018, 54, 6919-6922.	2.2	10
31	Tuning the Properties of Penetrating Peptides by Oxime Conjugation. Synlett, 2017, 28, 924-928.	1.0	5
32	Hydrazone-modulated peptides for efficient gene transfection. Journal of Materials Chemistry B, 2017, 5, 4426-4434.	2.9	30
33	Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chemical Communications, 2017, 53, 7861-7871.	2.2	63
34	Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chemical Science, 2017, 8, 7923-7931.	3.7	92
35	Highlights from the 52nd EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2017. Chemical Communications, 2017, 53, 9960-9966.	2.2	0
36	Poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: synthesis and post-polymerisation modification. Polymer Chemistry, 2017, 8, 4576-4584.	1.9	15

#	Article	IF	Citations
37	$R\tilde{A}\frac{1}{4}$ cktitelbild: In Situ Functionalized Polymers for siRNA Delivery (Angew. Chem. 26/2016). Angewandte Chemie, 2016, 128, 7676-7676.	1.6	O
38	In Situ Functionalized Polymers for siRNA Delivery. Angewandte Chemie - International Edition, 2016, 55, 7492-7495.	7.2	73
39	Membrane-disrupting iridium(iii) oligocationic organometallopeptides. Chemical Communications, 2016, 52, 11008-11011.	2.2	14
40	In Situ Functionalized Polymers for siRNA Delivery. Angewandte Chemie, 2016, 128, 7618-7621.	1.6	18
41	Cellular uptake: lessons from supramolecular organic chemistry. Chemical Communications, 2015, 51, 10389-10402.	2.2	124
42	Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes. ACS Nano, 2015, 9, 10834-10843.	7.3	46
43	Membrane-Targeted Self-Assembling Cyclic Peptide Nanotubes. Current Topics in Medicinal Chemistry, 2015, 14, 2647-2661.	1.0	33
44	Coupling of Carbon and Peptide Nanotubes. Journal of the American Chemical Society, 2014, 136, 2484-2491.	6.6	73
45	Biomembranes: Single-Nucleotide-Resolution DNA Differentiation by Pattern Generation in Lipid Bilayer Membranes (Small 18/2014). Small, 2014, 10, 3612-3612.	5.2	O
46	One-step chemoselective conversion of tetrahydropyranyl ethers to silyl-protected alcohols. RSC Advances, 2014, 4, 14475-14479.	1.7	6
47	Singleâ€Nucleotideâ€Resolution DNA Differentiation by Pattern Generation in Lipid Bilayer Membranes. Small, 2014, 10, 3613-3618.	5.2	15
48	Ion Channel Models Based on Self-Assembling Cyclic Peptide Nanotubes. Accounts of Chemical Research, 2013, 46, 2955-2965.	7.6	287
49	Dynamic Amphiphile Libraries To Screen for the "Fragrant―Delivery of siRNA into HeLa Cells and Human Primary Fibroblasts. Journal of the American Chemical Society, 2013, 135, 9295-9298.	6.6	85
50	Synthesis of 11â€∢i>cis⟨ i>â€Retinoids by Hydrosilylation–Protodesilylation of an 11,12â€Didehydro Precursor: Easy Access to 11―and 12â€Mono―and 11,12â€Dideuteroretinoids. Chemistry - A European Journal, 2012, 18, 14100-14107.	, 1.7	14
51	A Total Synthesis of Millingtonine A. Organic Letters, 2012, 14, 696-699.	2.4	38
52	Crossâ€Coupling Reactions of Organosilicon Compounds in the Stereocontrolled Synthesis of Retinoids. Chemistry - A European Journal, 2012, 18, 4401-4410.	1.7	31
53	Synthesis of an Enlarged Library of Dynamic DNA Activators with Oxime, Disulfide and Hydrazone Bridges. Chemistry - A European Journal, 2012, 18, 10436-10443.	1.7	34
54	Synthetic polyion-counterion transport systems in polymersomes and gels. Organic and Biomolecular Chemistry, 2011, 9, 6623.	1.5	11

#	Article	IF	CITATIONS
55	Pattern generation with synthetic sensing systems in lipid bilayer membranes. Chemical Science, 2011, 2, 303-307.	3.7	67
56	Comprehensive screening of octopus amphiphiles as DNA activators in lipid bilayers: implications on transport, sensing and cellular uptake. Organic and Biomolecular Chemistry, 2011, 9, 2641.	1.5	26
57	Recent synthetic transport systems. Chemical Society Reviews, 2011, 40, 2453.	18.7	321
58	Recent Progress with Functional Biosupramolecular Systems. Langmuir, 2011, 27, 9696-9705.	1.6	12
59	Conceptually New Entries into Cells. Chimia, 2011, 65, 853-858.	0.3	10
60	Anionic Activators for Differential Sensing with Cellâ€Penetrating Peptides. Chemistry - an Asian Journal, 2011, 6, 681-689.	1.7	15
61	Inside Cover: Anionic Activators for Differential Sensing with Cell-Penetrating Peptides (Chem. Asian J.) Tj ETQq1	1 0.784314 1:7	4 rgBT /Ove
62	Dynamic Octopus Amphiphiles as Powerful Activators of DNA Transporters: Differential Fragrance Sensing and Beyond. Chemistry - A European Journal, 2010, 16, 14159-14166.	1.7	22
63	Experimental evidence for the functional relevance of anion–π interactions. Nature Chemistry, 2010, 2, 533-538.	6.6	434
64	Hiyama Cross-Coupling Reaction in the Stereospecific Synthesis of Retinoids. Organic Letters, 2009, 11 , $141-144$.	2.4	33
65	Dynamic polythioesters via ring-opening polymerization of 1,4-thiazine-2,5-diones. Organic and Biomolecular Chemistry, 2009, 7, 2878.	1.5	35
66	Functional Biosupramolecular Systems. Chimia, 2009, 63, 881.	0.3	0
67	Highly Convergent, Stereospecific Synthesis of 11 -cis-Retinoids by Metal-Catalyzed Cross-Coupling Reactions of (Z)-1-Alkenylmetals. Journal of Organic Chemistry, 2007, 72, 9572-9581.	1.7	33
68	Synthesis of N-Heteroaryl Retinals and their Artificial Bacteriorhodopsins. ChemBioChem, 2005, 6, 2078-2087.	1.3	12