Daisuke Sakamaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719229/publications.pdf Version: 2024-02-01

DAISHKE SAKAMARI

#	Article	IF	CITATIONS
1	Nitrogen-embedded buckybowl and its assembly with C60. Nature Communications, 2015, 6, 8215.	5.8	208
2	Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Physical Chemistry Chemical Physics, 2014, 16, 11093-11113.	1.3	130
3	Fusion of Phosphole and 1,1′â€Biacenaphthene: Phosphorus(V)â€Containing Extended Ï€â€Systems with High Electron Affinity and Electron Mobility. Angewandte Chemie - International Edition, 2011, 50, 8016-8020.	7.2	115
4	A Facile and Versatile Approach to Double Nâ€Heterohelicenes: Tandem Oxidative CN Couplings of Nâ€Heteroacenes via Cruciform Dimers. Angewandte Chemie - International Edition, 2015, 54, 5404-5407.	7.2	77
5	Nâ€Substituted Dicyanomethylphenyl Radicals: Dynamic Covalent Properties and Formation of Stimuliâ€Responsive Cyclophanes by Selfâ€Assembly. Angewandte Chemie - International Edition, 2016, 55, 8634-8638.	7.2	76
6	Dynamic covalent bonds: approaches from stable radical species. Materials Chemistry Frontiers, 2019, 3, 2270-2282.	3.2	52
7	Effects of Carbon–Metal–Carbon Linkages on the Optical, Photophysical, and Electrochemical Properties of Phosphametallacycle-Linked Coplanar Porphyrin Dimers. Journal of the American Chemical Society, 2012, 134, 1825-1839.	6.6	50
8	A double hetero[4]helicene composed of two phenothiazines: synthesis, structural properties, and cationic states. Chemical Communications, 2015, 51, 17237-17240.	2.2	49
9	A Triphenylamine Doubleâ€Decker: From a Delocalized Radical Cation to a Diradical Dication with an Excited Triplet State. Angewandte Chemie - International Edition, 2012, 51, 9403-9406.	7.2	47
10	The Divergent Dimerization Behavior of Nâ€Substituted Dicyanomethyl Radicals: Dynamically Stabilized versus Stable Radicals. Angewandte Chemie - International Edition, 2017, 56, 16597-16601.	7.2	47
11	Supramolecular assemblies of a nitrogen-embedded buckybowl dimer with C ₆₀ . Chemical Science, 2018, 9, 819-824.	3.7	46
12	Diversity-oriented synthesis of tetrathia[8]circulenes by sequential C–H borylation and annulation. Chemical Communications, 2015, 51, 16944-16947.	2.2	44
13	Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique. Nature Communications, 2014, 5, 3718.	5.8	38
14	AIE active triphenylamine–benzothiazole based motifs: ESIPT or ICT emission. RSC Advances, 2016, 6, 26941-26949.	1.7	35
15	Recognizing Throughâ€Bond and Throughâ€Space Selfâ€Exchange Charge/Spin Transfer Pathways in Bis(triarylamine) Radical Cations with Similar Geometrical Arrangements. Angewandte Chemie - International Edition, 2017, 56, 15712-15717.	7.2	32
16	Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality. Journal of the American Chemical Society, 2018, 140, 7152-7158.	6.6	32
17	Spin-Delocalization in Charged States of <i>para</i> -Phenylene-Linked Dendritic Oligoarylamines. Chemistry of Materials, 2011, 23, 841-850.	3.2	31
18	Highly emissive excited-state intramolecular proton transfer (ESIPT) inspired 2-(2′-hydroxy)benzothiazole–fluorene motifs: spectroscopic and photophysical properties investigation. RSC Advances, 2015, 5, 80283-80296.	1.7	31

DAISUKE SAKAMAKI

#	Article	IF	CITATIONS
19	π–π Interactions: Influence on Molecular Packing and Solidâ€State Emission of ESIPT and nonâ€ESIPT Motifs. Asian Journal of Organic Chemistry, 2016, 5, 938-945.	1.3	31
20	N‣ubstituted Dicyanomethylphenyl Radicals: Dynamic Covalent Properties and Formation of Stimuliâ€Responsive Cyclophanes by Selfâ€Assembly. Angewandte Chemie, 2016, 128, 8776-8780.	1.6	31
21	Enhancing the low-energy absorption band and charge mobility of antiaromatic Ni ^{II} norcorroles by their substituent effects. Chemical Communications, 2017, 53, 1112-1115.	2.2	30
22	Optical and Structural Properties of ESIPT Inspired HBT–Fluorene Molecular Aggregates and Liquid Crystals. Journal of Physical Chemistry B, 2017, 121, 10407-10416.	1.2	30
23	1,3,5â€Benzenetriamine Double―and Tripleâ€Decker Molecules. Angewandte Chemie - International Edition, 2012, 51, 8281-8285.	7.2	28
24	Highly Fluorescent Liquid Crystals from Excitedâ€6tate Intramolecular Proton Transfer Molecules. Advanced Optical Materials, 2019, 7, 1801349.	3.6	27
25	A Polymacrocyclic Oligoarylamine with a Pseudobeltane Motif: Towards a Cylindrical Multispin System. Angewandte Chemie - International Edition, 2012, 51, 12776-12781.	7.2	26
26	Dicyanomethyl Radical-Based Near-Infrared Thermochromic Dyes with High Transparency in the Visible Region. , 2019, 1, 25-29.		26
27	Unique cohesive nature of the l² ₁ -isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers. Chemical Communications, 2018, 54, 405-408.	2.2	24
28	Polycationic States of Oligoanilines Based on Wurster's Blue. European Journal of Organic Chemistry, 2009, 2009, 4441-4450.	1.2	23
29	The Divergent Dimerization Behavior of Nâ€5ubstituted Dicyanomethyl Radicals: Dynamically Stabilized versus Stable Radicals. Angewandte Chemie, 2017, 129, 16824-16828.	1.6	23
30	Formation of Cyclophane Macrocycles in Carbazole-Based Biradicaloids: Impact of the Dicyanomethylene Substitution Position. ACS Omega, 2019, 4, 4761-4769.	1.6	23
31	Tetraaza[14]- and Octaaza[18]paracyclophane: Synthesis and Characterization of Their Neutral and Cationic States. Journal of Organic Chemistry, 2017, 82, 13348-13358.	1.7	21
32	<i>Meta</i> – <i>Para</i> -Linked Octaaza[1 ₈]cyclophanes and Their Polycationic States. Journal of Organic Chemistry, 2013, 78, 2947-2956.	1.7	20
33	High-spin polycationic states of an alternate meta-para-linked oligoarylamine incorporating two macrocycles. Chemical Communications, 2009, , 4524.	2.2	19
34	AIE Active Carbazole-Benzothiazole Based ESIPT Motifs: Positional Isomers Directing the Optical and Electronic Properties. ChemistrySelect, 2017, 2, 1959-1966.	0.7	19
35	Redox Modulation of <i>para</i> -Phenylenediamine by Substituted Nitronyl Nitroxide Groups and Their Spin States. Journal of Physical Chemistry A, 2013, 117, 12858-12867.	1.1	18
36	Recognizing Throughâ€Bond and Through‣pace Selfâ€Exchange Charge/Spin Transfer Pathways in Bis(triarylamine) Radical Cations with Similar Geometrical Arrangements. Angewandte Chemie, 2017, 129, 15918-15923.	1.6	17

DAISUKE SAKAMAKI

#	Article	IF	CITATIONS
37	Tetraaza[1.1.1.1]m,p,m,p-cyclophane Diradical Dications Revisited: Tuning Spin States by Confronted Arenes. Organic Letters, 2017, 19, 3115-3118.	2.4	16
38	Isolable Triradical Trication of Hexaaza[1 ₆]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System. Organic Letters, 2017, 19, 4371-4374.	2.4	16
39	Ferroceneâ€Substituted Naphthalenediimide with Broad Absorption and Electronâ€Transport Properties in the Segregatedâ€Stack Structure. Chemistry - A European Journal, 2016, 22, 7385-7388.	1.7	14
40	Electronic structure of tetraaza[1.1.1.1]o,p,o,p-cyclophane and its oxidized states. RSC Advances, 2014, 4, 39476-39483.	1.7	12
41	Reversible Control of Radius and Morphology of Fluoreneâ€Azobenzene Copolymer Nanowires by Light Exposure. Advanced Materials Interfaces, 2015, 2, 1400450.	1.9	12
42	Landscape of Charge Carrier Transport in Doped Poly(3-hexylthiophene): Noncontact Approach Using Ternary Combined Dielectric, Paramagnetic, and Optical Spectroscopies. Journal of Physical Chemistry Letters, 2018, 9, 3639-3645.	2.1	11
43	Double Heterohelicenes Composed of Benzo[b]- and Dibenzo[b,i]phenoxazine: A Comprehensive Comparison of Their Electronic and Chiroptical Properties. Journal of Physical Chemistry Letters, 2021, 12, 9283-9292.	2.1	10
44	Fabrication of "Clickable―Polyfluorene Nanowires with High Aspect Ratio as Biological Sensing Platforms. ACS Sensors, 2016, 1, 766-774.	4.0	9
45	A Triphenylamine with Two Phenoxy Radicals Having Unusual Bonding Patterns and a Closedâ€Shell Electronic State. Angewandte Chemie - International Edition, 2015, 54, 8267-8270.	7.2	8
46	Synthesis and Characterization of 6,13â€Diaminoâ€Substituted Pentacenes. Chemistry - A European Journal, 2016, 22, 2165-2170.	1.7	8
47	A dicyanomethyl radical stabilized by ferrocene: a new building block for radical-based dynamic covalent chemistry with redox activity. Chemical Communications, 2022, 58, 3553-3556.	2.2	8
48	A Triphenylamine with Two Phenoxy Radicals Having Unusual Bonding Patterns and a Closedâ€Shell Electronic State. Angewandte Chemie, 2015, 127, 8385-8388.	1.6	6
49	Synthesis and properties of a twin donor molecule composed of cofacially stacked dihydrodiazapentacenes. Materials Chemistry Frontiers, 2018, 2, 530-536.	3.2	5
50	Synthesis and Electronic Properties of Directly Linked Dihydrodiazatetracene Dimers. Chemistry - A European Journal, 2021, 27, 4430-4438.	1.7	5
51	Modulation of Openâ€shell Characters of Amineâ€inserted Diphenoquinones via Structural Modification. Chemistry - an Asian Journal, 2017, 12, 1889-1894.	1.7	4
52	Comparison of radical generation efficiencies of the oxime-based initiator radicals using galvinoxyl radical as an indicator. Japanese Journal of Applied Physics, 2018, 57, 086504.	0.8	4
53	Electronic and Photophysical Properties of 9,10â€Anthryleneâ€Bridged Bâ€i€â€N Donorâ€Acceptor Molecules with Solidâ€State Emission in the Yellow to Red Region. ChemPlusChem, 2019, 84, 1305-1313.	1.3	4
54	Tetrathiafulvaleneâ€Inserted Diphenoquinone: Synthesis, Structure, and Dynamic Redox Property. Chemistry - A European Journal, 2020, 26, 14144-14151.	1.7	4

DAISUKE SAKAMAKI

#	ARTICLE	IF	CITATIONS
55	Fabrication of Fluorescent Nanowires via High-Energy Particles-Triggered Polymerization Reactions. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 373-377.	0.1	3
56	Extreme multi-point van der Waals interactions: isolable dimers of phthalocyanines substituted with pillar-like azaacenes. Chemical Science, 2019, 10, 8939-8945.	3.7	3
57	Fully-substituted 1,3-Butadienes as π-Conjugated Linkers between Pyrenes. Chemistry Letters, 2016, 45, 403-405.	0.7	2
58	Liquid Crystals: Highly Fluorescent Liquid Crystals from Excited-State Intramolecular Proton Transfer Molecules (Advanced Optical Materials 2/2019). Advanced Optical Materials, 2019, 7, 1970008.	3.6	2
59	A simple and rapid method for high-resolution visualization of single-ion tracks. AIP Advances, 2014, 4, 117128.	0.6	1
60	Tuning of Open-shell Characters of a Terphenoquinone by Introducing a Benzodithiophene Unit. Chemistry Letters, 2017, 46, 805-807.	0.7	1
61	A Particle with High Energy: A Versatile Tool for Nanomaterials. Springer Briefs in Molecular Science, 2015, , 19-26.	0.1	1
62	Rücktitelbild: A Facile and Versatile Approach to Double N-Heterohelicenes: Tandem Oxidative CN Couplings of N-Heteroacenes via Cruciform Dimers (Angew. Chem. 18/2015). Angewandte Chemie, 2015, 127, 5620-5620.	1.6	0
63	Nanowires for Renewable Energy. Springer Briefs in Molecular Science, 2015, , 53-67.	0.1	0
64	High Pressure Synthesis of Hydride-fluoride Pyrochlore NaCaMg ₂ F _{7â^²} <i>_x</i> H <i>_x</i>). Chemistry Letters, 2018, 47, 829-832.	0.7	0
65	Bio-compatible Nanomaterials. Springer Briefs in Molecular Science, 2015, , 27-39.	0.1	0
66	Stimuli-Responsive Nanomaterials. Springer Briefs in Molecular Science, 2015, , 41-52.	0.1	0
67	Single-Particle Triggered Polymerization. Springer Briefs in Molecular Science, 2015, , 69-74.	0.1	0