Peng Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/719205/peng-chen-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33,356 173 374 94 h-index g-index citations papers 38,108 10.6 381 7.67 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
374	Transdermal Photothermal-Pharmacotherapy to Remodel Adipose Tissue for Obesity and Metabolic Disorders <i>ACS Nano</i> , 2022 ,	16.7	4
373	Patterned optical anisotropic film for generation of non-diffracting vortex beams. <i>Applied Physics Letters</i> , 2022 , 120, 031101	3.4	0
372	Physiological and DNA methylation analysis provides epigenetic insights into chromium tolerance in kenaf. <i>Environmental and Experimental Botany</i> , 2022 , 194, 104684	5.9	2
371	Visible and Online Detection of Near-Infrared Optical Vortices via Nonlinear Photonic Crystals (Advanced Optical Materials 1/2022). <i>Advanced Optical Materials</i> , 2022 , 10, 2270002	8.1	
370	Lead-free metal-halide double perovskites: from optoelectronic properties to applications. <i>Nanophotonics</i> , 2021 , 10, 2181-2219	6.3	9
369	Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. <i>Nature</i> , 2021 , 599, 404-410	50.4	7
368	An all-Liquid-Crystal Strategy for Fast Orbital Angular Momentum Encoding and Optical Vortex Steering. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2021 , 1-1	3.8	1
367	Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited]. <i>Chinese Optics Letters</i> , 2021 , 19, 112601	2.2	7
366	Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. <i>Advanced Materials</i> , 2021 , e2105958	24	25
365	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. <i>Science</i> , 2021 , 374, 621-625	33.3	29
364	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
363	Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. <i>Applied Physics Letters</i> , 2021 , 118, 151102	3.4	8
362	5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). <i>Chemosphere</i> , 2021 , 271, 129562	8.4	5
361	Nanoconfined Topochemical Conversion from MXene to Ultrathin Non-Layered TiN Nanomesh toward Superior Electrocatalysts for Lithium-Sulfur Batteries. <i>Small</i> , 2021 , 17, e2101360	11	7
360	Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars. <i>Chemosphere</i> , 2021 , 263, 128211	8.4	14
359	Minimizing Voltage Losses in Perovskite Solar Cells. <i>Small Structures</i> , 2021 , 2, 2000050	8.7	21
358	Switchable Second-Harmonic Generation of Airy Beam and Airy Vortex Beam. <i>Advanced Optical Materials</i> , 2021 , 9, 2001776	8.1	7

(2020-2021)

357	A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf. <i>Plant Cell Reports</i> , 2021 , 40, 223-236	5.1	3
356	Highly Selective Synthesis of Monolayer or Bilayer WSe2 Single Crystals by Pre-annealing the Solid Precursor. <i>Chemistry of Materials</i> , 2021 , 33, 1307-1313	9.6	6
355	Substrate Engineering for CVD Growth of Single Crystal Graphene Small Methods, 2021, 5, e2001213	12.8	14
354	Programmable self-propelling actuators enabled by a dynamic helical medium. <i>Science Advances</i> , 2021 , 7,	14.3	5
353	Integrated Methylome and Transcriptome Analyses Reveal the Molecular Mechanism by Which DNA Methylation Regulates Kenaf Flowering. <i>Frontiers in Plant Science</i> , 2021 , 12, 709030	6.2	0
352	Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. <i>Carbon</i> , 2021 , 184, 554-561	10.4	4
351	Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO Reduction. <i>ACS Nano</i> , 2020 , 14, 15841-15852	16.7	123
350	In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO Photoanodes. <i>Advanced Materials</i> , 2020 , 32, e2001385	24	103
349	Transdermal theranostics. <i>View</i> , 2020 , 1, e21	7.8	10
348	Intermarriage of Halide Perovskites and Metal-Organic Framework Crystals. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19434-19449	16.4	30
347	Intermarriage of Halide Perovskites and Metal-Organic Framework Crystals. <i>Angewandte Chemie</i> , 2020 , 132, 19602-19617	3.6	4
346	Smectic Defect Engineering Enabled by Programmable Photoalignment. <i>Advanced Optical Materials</i> , 2020 , 8, 2000593	8.1	7
345	Liquid-Crystal-Mediated Active Waveguides toward Programmable Integrated Optics. <i>Advanced Optical Materials</i> , 2020 , 8, 1902033	8.1	6
344	Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. <i>CheM</i> , 2020 , 6, 1172-1182	16.2	18
343	Lancing Drug Reservoirs into Subcutaneous Fat to Combat Obesity and Associated Metabolic Diseases. <i>Small</i> , 2020 , 16, e2002872	11	1
342	Designing efficient BiFeO photoanodes via bulk and surface defect engineering. <i>Chemical Communications</i> , 2020 , 56, 9376-9379	5.8	6
341	High-order minibands and interband Landau level reconstruction in graphene moir uperlattices. <i>Physical Review B</i> , 2020 , 102,	3.3	1
340	Planar Terahertz Photonics Mediated by Liquid Crystal Polymers. <i>Advanced Optical Materials</i> , 2020 , 8, 1902124	8.1	18

339	Theoretical design and experimental investigation on highly selective Pd particles decorated CN for safe photocatalytic NO purification. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122357	12.8	59
338	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. <i>ACS Nano</i> , 2020 , 14, 1185-1195	16.7	58
337	Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway. <i>Science Bulletin</i> , 2020 , 65, 467-4	76 ^{0.6}	67
336	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1⊠FAxPbI3 quantum dot solar cells with reduced phase segregation. <i>Nature Energy</i> , 2020 , 5, 79-88	62.3	237
335	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. <i>ACS Applied Materials & Discourse (Control of State of S</i>	9.5	18
334	The high selectivity for benzoic acid formation on Ca2Sb2O7 enables efficient and stable toluene mineralization. <i>Applied Catalysis B: Environmental</i> , 2020 , 271, 118948	21.8	23
333	Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. <i>Advanced Materials</i> , 2020 , 32, e1903665	24	49
332	Liquid crystal integrated metalens with tunable chromatic aberration. <i>Advanced Photonics</i> , 2020 , 2, 1	8.1	32
331	Flexible solar-rechargeable energy system. Energy Storage Materials, 2020, 32, 356-376	19.4	10
330	iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). <i>Industrial Crops and Products</i> , 2020 , 153, 112566	5.9	5
329	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. <i>Nature Electronics</i> , 2020 , 3, 630-637	28.4	26
328	Ultrafast growth of large single crystals of monolayer WS and WSe. <i>National Science Review</i> , 2020 , 7, 737-744	10.8	36
327	Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118545	21.8	102
326	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. <i>Nano Energy</i> , 2020 , 69, 104410	17.1	34
325	Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. <i>Nano Energy</i> , 2020 , 69, 104412	17.1	33
324	Comparative Cytological and Gene Expression Analysis Reveals Potential Metabolic Pathways and Target Genes Responsive to Salt Stress in Kenaf (Hibiscus cannabinus L.). <i>Journal of Plant Growth Regulation</i> , 2020 , 39, 1245-1260	4.7	11
323	Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. <i>Nano Energy</i> , 2020 , 69, 104392	17.1	31
322	Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. <i>EcoMat</i> , 2020 , 2, e12047	9.4	35

(2019-2020)

321	Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L.). <i>Industrial Crops and Products</i> , 2020 , 158, 112970	5.9	19
320	Enhancing electrochemical nitrogen reduction with Ru nanowires via the atomic decoration of Pt. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25142-25147	13	8
319	Unveiling the unconventional roles of methyl number on the ring-opening barrier in photocatalytic decomposition of benzene, toluene and o-xylene. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119318	21.8	25
318	Sulfur-based redox chemistry for electrochemical energy storage. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213445	23.2	11
317	J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20065-20074	16.4	23
316	Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000062	8.3	30
315	Spin-controlled massive channels of hybrid-order Poincarßphere beams. <i>Applied Physics Letters</i> , 2020 , 117, 081101	3.4	8
314	Dual-Ion-Diffusion Induced Degradation in Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2002342	15.6	39
313	Facet-Dependent Catalytic Performance of Au Nanocrystals for Electrochemical Nitrogen Reduction. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2020 , 12, 41613-41619	9.5	22
312	Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy 2020 , 2, 1268-1286		25
311	Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. <i>Chemical Engineering Journal</i> , 2020 , 379, 122282	14.7	161
310	Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118130	21.8	75
309	The importance of intermediates ring-opening in preventing photocatalyst deactivation during toluene decomposition. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 118977	21.8	46
308	Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable ZnAir Battery 2019 , 1, 432-439		49
307	Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns. <i>Nanoscale</i> , 2019 , 11, 2366-2373	7.7	36
306	Light-Activated Liquid Crystalline Hierarchical Architecture Toward Photonics. <i>Advanced Optical Materials</i> , 2019 , 7, 1900393	8.1	19
305	Chirality invertible superstructure mediated active planar optics. <i>Nature Communications</i> , 2019 , 10, 2518	817.4	63
304	A Portable and Efficient Solar-Rechargeable Battery with Ultrafast Photo-Charge/Discharge Rate. <i>Advanced Energy Materials</i> , 2019 , 9, 1900872	21.8	35

303	Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. <i>Chinese Journal of Catalysis</i> , 2019 , 40, 620-630	11.3	48
302	Comparative profile analysis reveals differentially expressed microRNAs regulate anther and pollen development in kenaf cytoplasmic male sterility line. <i>Genome</i> , 2019 , 62, 455-466	2.4	2
301	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. <i>Advanced Materials</i> , 2019 , 31, e1808283	24	343
300	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. <i>Nano Research</i> , 2019 , 12, 1139-1145	10	28
299	Promoted reactants activation and charge separation leading to efficient photocatalytic activity on phosphate/potassium co-functionalized carbon nitride. <i>Chinese Chemical Letters</i> , 2019 , 30, 875-880	8.1	31
298	A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. <i>Crystals</i> , 2019 , 9, 111	2.3	14
297	Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). <i>Biological Research</i> , 2019 , 52, 20	7.6	14
296	Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. <i>Advanced Therapeutics</i> , 2019 , 2, 1900064	4.9	14
295	Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20733-20741	13	22
294	Band evolution of two-dimensional transition metal dichalcogenides under electric fields. <i>Applied Physics Letters</i> , 2019 , 115, 083104	3.4	4
293	Controlling the secondary pollutant on B-doped g-C3N4 during photocatalytic NO removal: a combined DRIFTS and DFT investigation. <i>Catalysis Science and Technology</i> , 2019 , 9, 4531-4537	5.5	13
292	Evolution of orbital angular momentum in a soft quasi-periodic structure with topological defects. <i>Optics Express</i> , 2019 , 27, 21667-21676	3.3	4
291	Ferroelectric liquid crystal mediated fast switchable orbital angular momentum of light. <i>Optics Express</i> , 2019 , 27, 36903-36910	3.3	6
290	Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS Nano, 2019, 13, 137	70 9 6137	′1 5 3
289	Graphene oxide mediated co-generation of C-doping and oxygen defects in BiWO nanosheets: a combined DRIFTS and DFT investigation. <i>Nanoscale</i> , 2019 , 11, 20562-20570	7.7	24
288	Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO for Sustainable Visible Light Photocatalysis. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 47984-47991	9.5	36
287	Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1030-1034	16.4	159
286	Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots. <i>Advanced Functional Materials</i> , 2019 , 29, 1806500	15.6	204

285	Photoinduced Liquid Crystal Domain Engineering for Optical Field Control 2019 , 361-387		1
284	Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. <i>Physiologia Plantarum</i> , 2019 , 166, 960-978	4.6	4
283	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. <i>Nano Research</i> , 2019 , 12, 339-344	10	25
282	Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 19-30	21.8	79
281	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. <i>Nanoscale</i> , 2018 , 10, 5442-5448	7.7	39
280	Fragmentation of twisted light in photonphonon nonlinear propagation. <i>Applied Physics Letters</i> , 2018 , 112, 161103	3.4	11
279	Synergistic photo-thermal catalytic NO purification of MnO x /g-C 3 N 4 : Enhanced performance and reaction mechanism. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 619-629	11.3	56
278	Organic Dye Based Nanoparticles for Cancer Phototheranostics. <i>Small</i> , 2018 , 14, e1704247	11	160
277	Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. <i>Amino Acids</i> , 2018 , 50, 841-862	3.5	15
276	Bulk SnO @C composite for improved lithium storage. <i>Journal of Alloys and Compounds</i> , 2018 , 740, 312	-3;2;0	5
275	Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. <i>Biomaterials Science</i> , 2018 , 6, 746-765	7·4	187
274	Progress and Perspective in Low-Dimensional Metal Halide Perovskites for Optoelectronic Applications. <i>Solar Rrl</i> , 2018 , 2, 1700186	7.1	69
273	In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1706923	15.6	361
272	Broadband Plasmonic Antenna Enhanced Upconversion and Its Application in Flexible Fingerprint Identification. <i>Advanced Optical Materials</i> , 2018 , 6, 1701119	8.1	24
271	Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 364-371	8.5	57
270	Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines. <i>Protoplasma</i> , 2018 , 255, 863-871	3.4	11
269	Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing. <i>Advanced Materials</i> , 2018 , 30, 1705865	24	99
268	Nacre Mimetic with Embedded Silver Nanowire for Resistive Heating. <i>ACS Applied Nano Materials</i> , 2018 , 1, 940-952	5.6	12

267	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. <i>Carbon</i> , 2018 , 136, 224-233	10.4	47
266	New BiVO Dual Photoanodes with Enriched Oxygen Vacancies for Efficient Solar-Driven Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1800486	24	282
265	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. <i>Nano Energy</i> , 2018 , 48, 284-291	17.1	103
264	Vortex Airy beams directly generated via liquid crystal q-Airy-plates. <i>Applied Physics Letters</i> , 2018 , 112, 121101	3.4	33
263	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO Reduction. <i>ACS Nano</i> , 2018 , 12, 3523-3532	16.7	222
262	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. <i>Chemical Society Reviews</i> , 2018 , 47, 3129-3151	58.5	99
261	Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. <i>Biomaterials Science</i> , 2018 , 6, 779-784	7.4	33
260	Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases. <i>Nano Research</i> , 2018 , 11, 1744-1754	10	14
259	Synthesis of Ultrathin Metallic MTe (M = V, Nb, Ta) Single-Crystalline Nanoplates. <i>Advanced Materials</i> , 2018 , 30, e1801043	24	111
258	Control the orbital angular momentum in third-harmonic generation using quasi-phase-matching. <i>Optics Express</i> , 2018 , 26, 17563-17570	3.3	9
257	Inorganic p-Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1800032	5.9	15
256	Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22629-22635	3.6	10
255	Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13484-13488	16.4	26
254	Enhanced plasmonic photocatalytic disinfection on noble-metal-free bismuth nanospheres/graphene nanocomposites. <i>Catalysis Science and Technology</i> , 2018 , 8, 4600-4603	5.5	18
253	Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered ECuI. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	21
252	Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures. <i>Optics Express</i> , 2018 , 26, 28818-28826	3.3	12
251	Parallel Processing OAM Modes Through Liquid Crystal Photoalignment 2018,		1
250	Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. <i>Nano Letters</i> , 2018 , 18, 586-594	11.5	234

249	Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. <i>ACS Nano</i> , 2018 , 12, 12673-12681	16.7	84
248	Chemical Vapor Deposition Growth of Single Crystalline CoTe2 Nanosheets with Tunable Thickness and Electronic Properties. <i>Chemistry of Materials</i> , 2018 , 30, 8891-8896	9.6	30
247	Perfect Higher-Order Poincar Sphere Beams from Digitalized Geometric Phases. <i>Physical Review Applied</i> , 2018 , 10,	4.3	22
246	Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. <i>Optics Letters</i> , 2018 , 43, 4695-4698	3	34
245	Solution-processable 2D semiconductors for high-performance large-area electronics. <i>Nature</i> , 2018 , 562, 254-258	50.4	404
244	Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology, 2018 , 29, 474002	3.4	22
243	Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants. <i>Scientific Reports</i> , 2018 , 8, 12714	4.9	23
242	Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11154-11162	13	69
241	Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe Single Crystals and Their Thickness-Dependent Electronic Properties. <i>Nano Letters</i> , 2018 , 18, 3523-3529	11.5	103
240	Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. <i>Physical Review Letters</i> , 2018 , 120, 216601	7.4	19
239	An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1566-1573	7.3	81
238	Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. <i>Ultrasonics Sonochemistry</i> , 2017 , 38, 145-153	8.9	46
237	Enhanced perovskite electronic properties via a modified lead(II) chloride Lewis acidBase adduct and their effect in high-efficiency perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5195-	5203	103
236	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. <i>Small</i> , 2017 , 13, 1604139	11	63
235	Smectic Layer Origami via Preprogrammed Photoalignment. <i>Advanced Materials</i> , 2017 , 29, 1606671	24	30
234	Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. <i>Advanced Functional Materials</i> , 2017 , 27, 1700493	15.6	55
233	An elaborate strategy for fabricating one-dimensional quasi-hollow nanostructure of tin dioxide@carbon composite with improved lithium storage performance. <i>Carbon</i> , 2017 , 118, 634-641	10.4	21
232	Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6593-6600	7.3	78

231	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. <i>Small</i> , 2017 , 13, 1700798	11	51
230	Optical field control via liquid crystal photoalignment. <i>Molecular Crystals and Liquid Crystals</i> , 2017 , 644, 3-11	0.5	4
229	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. <i>Advanced Materials</i> , 2017 , 29, 1604764	24	194
228	Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. <i>Chemical Engineering Journal</i> , 2017 , 326, 839-848	14.7	36
227	An Electrochemically Treated BiVO Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2017 , 56, 8500-8504	16.4	278
226	Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding. <i>ACS Photonics</i> , 2017 , 4, 1333-1338	6.3	69
225	A Graphene Quantum Dots-Hypochlorite Hybrid System for the Quantitative Fluorescent Determination of Total Antioxidant Capacity. <i>Small</i> , 2017 , 13, 1700709	11	16
224	Spectral and spatial characterization of upconversion luminescent nanocrystals as nanowaveguides. <i>Nanoscale</i> , 2017 , 9, 9238-9245	7.7	10
223	Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20340-20347	9.5	18
222	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. <i>Chemistry of Materials</i> , 2017 , 29, 5216-5224	9.6	145
221	Identification of a novel cytoplasmic male sterile line M2BS induced by partial-length HcPDIL5-2a transformation in rice (Oryza sativa L.) 2017 , 60, 146-153		5
220	Addressing Toxicity of Lead: Progress and Applications of Low-Toxic Metal Halide Perovskites and Their Derivatives. <i>Advanced Energy Materials</i> , 2017 , 7, 1602512	21.8	217
219	Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI/MoS (WS, WSe) van der Waals Heterostructures, and Patterned Arrays. <i>ACS Nano</i> , 2017 , 11, 3413-3419	16.7	45
218	Achievement of significantly improved lithium storage for novel clew-like Li 4 Ti 5 O 12 anode assembled by ultrafine nanowires. <i>Journal of Power Sources</i> , 2017 , 350, 49-55	8.9	23
217	Precisely Aligned Monolayer MoS Epitaxially Grown on h-BN basal Plane. <i>Small</i> , 2017 , 13, 1603005	11	73
216	Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. <i>Nano Research</i> , 2017 , 10, 794-801	10	40
215	Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems. <i>Small</i> , 2017 , 13, 1602010	11	37
214	RNA Binding Protein Ybx2 Regulates RNA Stability During Cold-Induced Brown Fat Activation. <i>Diabetes</i> , 2017 , 66, 2987-3000	0.9	15

213	Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core-Shell Plasmonic Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5673-5679	6.4	9
212	Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. <i>Small Methods</i> , 2017 , 1, 1700269	12.8	54
211	Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy. <i>ACS Applied Materials & Discrete Material</i>	9.5	32
210	Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 8998-9009	16.7	199
209	Graphene-Contacted Ultrashort Channel Monolayer MoS Transistors. <i>Advanced Materials</i> , 2017 , 29, 170	2572	144
208	Tailoring the photon spin via lighthatter interaction in liquid-crystal-based twisting structures. <i>Npj Quantum Materials</i> , 2017 , 2,	5	6
207	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. <i>Advanced Materials</i> , 2017 , 29, 1702243	24	172
206	Highly Sensitive MoS Humidity Sensors Array for Noncontact Sensation. <i>Advanced Materials</i> , 2017 , 29, 1702076	24	223
205	Synthesis of 2D Layered Bil Nanoplates, Bil /WSe van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. <i>Small</i> , 2017 , 13, 1701034	11	41
204	Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. <i>Science</i> , 2017 , 357, 788-792	33.3	388
203	The synergistic effect supported Li 4 Ti 5 O 12 anode with advanced lithium storage performance. <i>Materials Chemistry and Physics</i> , 2017 , 201, 362-371	4.4	2
202	Integrative analyses of translatome and transcriptome reveal important translational controls in brown and white adipose regulated by microRNAs. <i>Scientific Reports</i> , 2017 , 7, 5681	4.9	5
201	Surface Modified TiC MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 40077-40086	9.5	329
200	Generation of strong cylindrical vector pulses via stimulated Brillouin amplification. <i>Applied Physics Letters</i> , 2017 , 110, 141104	3.4	13
199	Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. <i>Advanced Materials</i> , 2017 , 29, 1606665	24	259
198	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 152-157	7.8	10
197	Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. <i>Applied Physics Letters</i> , 2017 , 111, 263106	3.4	31
196	Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal. <i>Optics Express</i> , 2017 , 25, 11556-11563	3.3	9

195	Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. <i>Optics Express</i> , 2017 , 25, 12349-12356	3.3	62
194	Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. <i>Optics Express</i> , 2017 , 25, 14059-14064	3.3	14
193	Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors. <i>Crystals</i> , 2017 , 7, 314	2.3	12
192	Examining second-harmonic generation of high-order Laguerre-Gaussian modes through a single cylindrical lens. <i>Optics Letters</i> , 2017 , 42, 4387-4390	3	12
191	Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. <i>PLoS Biology</i> , 2017 , 15, e2002176	9.7	41
190	Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. <i>Applied Physics Letters</i> , 2017 , 111, 141901	3.4	31
189	Generation of Equal-Energy Orbital Angular Momentum Beams via Photopatterned Liquid Crystals. <i>Physical Review Applied</i> , 2016 , 5,	4.3	46
188	Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. <i>Physical Review Letters</i> , 2016 , 116, 126101	7.4	103
187	Meta-q-plate for complex beam shaping. Scientific Reports, 2016, 6, 25528	4.9	67
186	Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 1950-6	24	172
185	Beam shaping via photopatterned liquid crystals. <i>Liquid Crystals</i> , 2016 , 43, 2051-2061	2.3	31
184	Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating. <i>Optical Materials Express</i> , 2016 , 6, 597	2.6	32
183	Gate tunable WSe2-BP van der Waals heterojunction devices. <i>Nanoscale</i> , 2016 , 8, 3254-8	7.7	50
182	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. <i>Nanoscale Horizons</i> , 2016 , 1, 156-160	10.8	84
181	Optical array generator based on blue phase liquid crystal Dammann grating. <i>Optical Materials Express</i> , 2016 , 6, 1087	2.6	26
180	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. <i>ACS Nano</i> , 2016 , 10, 3622-9	16.7	124
179	Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. <i>Chemical Society Reviews</i> , 2016 , 45, 2239-62	58.5	311
178	The Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2. <i>Crystals</i> , 2016 , 6, 115	2.3	15

(2015-2016)

177	Integrated and reconfigurable optical paths based on stacking optical functional films. <i>Optics Express</i> , 2016 , 24, 25510-25514	3.3	14
176	Liquid crystal depolarizer based on photoalignment technology. <i>Photonics Research</i> , 2016 , 4, 70	6	17
175	Rolling Up a Monolayer MoS2 Sheet. <i>Small</i> , 2016 , 12, 3770-4	11	39
174	Weavable, High-Performance, Solid-State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600102	6.4	35
173	Recent advances in low-toxic lead-free metal halide perovskite materials for solar cell application. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2016 , 11, 392-398	1.3	22
172	Controlling armchair and zigzag edges in oxidative cutting of graphene. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6539-6545	7.1	5
171	High-quality graphene grown on polycrystalline PtRh20 alloy foils by low pressure chemical vapor deposition and its electrical transport properties. <i>Applied Physics Letters</i> , 2016 , 108, 063102	3.4	3
170	Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. <i>ACS Nano</i> , 2016 , 10, 11066-11075	16.7	90
169	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. <i>ACS Nano</i> , 2016 , 10, 11475-11482	16.7	56
168	Graphene nanoribbons epitaxy on boron nitride. <i>Applied Physics Letters</i> , 2016 , 108, 113103	3.4	17
167	Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. <i>Applied Physics Letters</i> , 2016 , 109, 053101	3.4	17
166	Generation of self-healing and transverse accelerating optical vortices. <i>Applied Physics Letters</i> , 2016 , 109, 121105	3.4	18
165	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. <i>Nano Research</i> , 2016 , 9, 1300-1309	10	67
164	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. <i>Chemical Science</i> , 2016 , 7, 5118-5125	9.4	97
163	MetalBrganic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. <i>Nano Research</i> , 2016 , 9, 2234-2243	10	185
162	Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4651-6	16.4	310
161	MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8483-8488	13	155
160	Gate tunable MoS 2 Black phosphorus heterojunction devices. 2D Materials, 2015, 2, 034009	5.9	55

159	De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. <i>Cell Metabolism</i> , 2015 , 21, 764-776	24.6	136
158	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. <i>Nanoscale</i> , 2015 , 7, 8159-65	7:7	149
157	Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. <i>Journal of Biological Chemistry</i> , 2015 , 290, 14679-91	5.4	65
156	GrapheneBacteria composite for oxygen reduction and lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12873-12879	13	16
155	Strategies for enhancing the sensitivity of plasmonic nanosensors. <i>Nano Today</i> , 2015 , 10, 213-239	17.9	283
154	Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors. <i>2D Materials</i> , 2015 , 2, 034018	5.9	32
153	Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. <i>Photonics Research</i> , 2015 , 3, 133	6	81
152	Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. <i>Small</i> , 2015 , 11, 1620-36	11	1415
151	Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. <i>Electrochemistry Communications</i> , 2015 , 51, 33-36	5.1	147
150	Regulatory networks of non-coding RNAs in brown/beige adipogenesis. <i>Bioscience Reports</i> , 2015 , 35,	4.1	26
149	Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. <i>Scientific Reports</i> , 2015 , 5, 17484	4.9	42
148	Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. <i>Applied Physics Letters</i> , 2015 , 107, 241102	3.4	84
147	A Novel Electroactive Polymer for pH-independent Oxygen Sensing. <i>Electroanalysis</i> , 2015 , 27, 2745-275	523	3
146	Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light: Science and Applications, 2015 , 4, e253-e253	16.7	111
145	Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. <i>Electrochimica Acta</i> , 2015 , 172, 7-11	6.7	160
144	Microfiber devices based on carbon materials. <i>Materials Today</i> , 2015 , 18, 215-226	21.8	50
143	Phase-controlled synthesis of ENiS nanoparticles confined in carbon nanorods for high performance supercapacitors. <i>Scientific Reports</i> , 2014 , 4, 7054	4.9	86
142	Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+ Sensing. <i>Advanced Functional Materials</i> , 2014 , 24, 3021-3026	15.6	377

141	A general route towards defect and pore engineering in graphene. Small, 2014, 10, 2280-4	11	42
140	Apelin attenuates oxidative stress in human adipocytes. <i>Journal of Biological Chemistry</i> , 2014 , 289, 3763	3 <i>-</i> 7 . 4	70
139	Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. <i>Nanoscale</i> , 2014 , 6, 7424-9	7.7	152
138	Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing. <i>Materials Horizons</i> , 2014 , 1, 529-534	14.4	26
137	Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells. <i>ACS Applied Materials & Distriction (Control of the Control of the Control</i>	9.5	123
136	Strain sensors based on chromium nanoparticle arrays. <i>Nanoscale</i> , 2014 , 6, 3930-3	7.7	68
135	Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12576-80	16.4	54
134	Heteroatom-doped graphene materials: syntheses, properties and applications. <i>Chemical Society Reviews</i> , 2014 , 43, 7067-98	58.5	1258
133	Revealing the tunable photoluminescence properties of graphene quantum dots. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6954-6960	7.1	398
132	Fabrication of high-quality all-graphene devices with low contact resistances. <i>Nano Research</i> , 2014 , 7, 1449-1456	10	14
131	Fluorescence quenching between unbonded graphene quantum dots and gold nanoparticles upon simple mixing. <i>RSC Advances</i> , 2014 , 4, 35673-35677	3.7	25
130	Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. <i>ChemSusChem</i> , 2014 , 7, 1407-14	8.3	27
129	Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. <i>Nanoscale</i> , 2014 , 6, 4560-5	7.7	22
128	TiN@VN Nanowire Arrays on 3D Carbon for High-Performance Supercapacitors. <i>ChemElectroChem</i> , 2014 , 1, 1027-1030	4.3	20
127	A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano, 2014, 8, 3955-60	16.7	28
126	Band-gap manipulations of monolayer graphene by phenyl radical adsorptions: a density functional theory study. <i>ChemPhysChem</i> , 2014 , 15, 2610-7	3.2	
125	Comparative Proteomics Study on Anther Mitochondria between Cytoplasmic Male Sterility Line and its Maintainer in Kenaf (Hibiscus cannabinus L.). <i>Crop Science</i> , 2014 , 54, 1103-1114	2.4	2
124	Defect-enhanced coupling between graphene and SiO2 substrate. <i>Applied Physics Letters</i> , 2014 , 105, 063113	3.4	4

123	An interwoven network of MnOIhanowires and carbon nanotubes as the anode for bendable lithium-ion batteries. <i>ChemPhysChem</i> , 2014 , 15, 2445-9	3.2	20
122	Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). <i>Molecular Breeding</i> , 2014 , 34, 1879-1891	3.4	30
121	Tunable electroluminescence in planar graphene/SiO(2) memristors. Advanced Materials, 2013, 25, 5593	3-284	56
120	A comparative study of the atp9 gene between a cytoplasmic male sterile line and its maintainer line and further development of a molecular marker specific for male sterile cytoplasm in kenaf (Hibiscus cannabinus L.). <i>Molecular Breeding</i> , 2013 , 32, 969-976	3.4	10
119	2D single- or double-layered vanadium oxide nanosheet assembled 3D microflowers: controlled synthesis, growth mechanism, and applications. <i>Nanoscale</i> , 2013 , 5, 7790-4	7.7	20
118	Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: lead detection as a case study. <i>Analytical Chemistry</i> , 2013 , 85, 4094-9	7.8	77
117	Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. <i>Electrochimica Acta</i> , 2013 , 111, 441-446	6.7	58
116	Carbon-based spintronics. Science China: Physics, Mechanics and Astronomy, 2013, 56, 207-221	3.6	14
115	Fabrication of all-in-one multifunctional phage liquid crystalline fibers. RSC Advances, 2013, 3, 20437	3.7	1
114	Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. <i>Journal of Biological Chemistry</i> , 2013 , 288, 15520-31	5.4	47
113	Gallium-doped tin oxide nano-cuboids for improved dye sensitized solar cell. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 11377-82	9.5	31
112	In Situ Charge-Transfer-Induced Transition from Metallic to Semiconducting Single-Walled Carbon Nanotubes. <i>Chemistry of Materials</i> , 2013 , 25, 4464-4470	9.6	7
111	Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. <i>ACS Applied Materials & District Research</i> , 12073-82	9.5	120
110	Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. <i>Bioresource Technology</i> , 2013 , 130, 763-8	11	69
109	Nanoporous tin oxide photoelectrode prepared by electrochemical anodization in aqueous ammonia to improve performance of dye sensitized solar cell. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 023120	2.5	20
108	Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. <i>Journal of Molecular Catalysis A</i> , 2013 , 378, 285-292		74
107	High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. <i>Nanoscale</i> , 2013 , 5, 9860-6	7.7	82
106	High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4057	13	69

105	Graphene wrapped SnCo nanoparticles for high-capacity lithium ion storage. <i>Journal of Power Sources</i> , 2013 , 222, 526-532	8.9	69
104	Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells. <i>ACS Applied Materials & Distriction (Control of the Control of the Contr</i>	:- 7 ^{.5}	90
103	Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 545-52	11.8	15
102	A hierarchically structured composite of MnO/3D graphene foam for flexible nonenzymatic biosensors. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 110-115	7-3	123
101	Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9170-6	3.6	39
100	Electrodeposition of hierarchical MnO spheres for enzyme immobilization and glucose biosensing. Journal of Materials Chemistry B, 2013 , 1, 2696-2700	7-3	28
99	Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. <i>Electrochemistry Communications</i> , 2013 , 26, 81-84	5.1	100
98	Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. <i>ACS Nano</i> , 2013 , 7, 6278-86	16.7	204
97	The electrical detection of lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device. <i>Advanced Healthcare Materials</i> , 2013 , 2, 271-4	10.1	66
96	Supercapacitor electrode based on three-dimensional graphenefolyaniline hybrid. <i>Materials Chemistry and Physics</i> , 2012 , 134, 576-580	4.4	116
95	Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. <i>Molecular and Cellular Endocrinology</i> , 2012 , 351, 296-305	4.4	19
94	RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. <i>ACS Nano</i> , 2012 , 6, 6944-51	16.7	149
93	Synthesis of a MnO2graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. <i>Carbon</i> , 2012 , 50, 4865-4870	10.4	184
92	3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. <i>ACS Applied Materials & Distributed & </i>	9.5	264
91	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. <i>RSC Advances</i> , 2012 , 2, 4364	3.7	253
90	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. <i>Nanoscale</i> , 2012 , 4, 293-7	7.7	164
89	Synthesis of graphenellarbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17044		181
88	3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. <i>ACS Nano</i> , 2012 , 6, 3206-13	16.7	1371

87	Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. <i>ACS Nano</i> , 2012 , 6, 2394-400	16.7	469
86	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. <i>Chemical Communications</i> , 2012 , 48, 1066	o ⁵ 2 ⁸	436
85	Macroporous foam of reduced graphene oxides prepared by lyophilization. <i>Materials Research Bulletin</i> , 2012 , 47, 4335-4339	5.1	16
84	Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. <i>Molecular and Cellular Endocrinology</i> , 2012 , 362, 227-41	4.4	71
83	Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5286		189
82	Anticancer efficacy and subcellular site of action investigated by real-time monitoring of cellular responses to localized drug delivery in single cells. <i>Small</i> , 2012 , 8, 2670-4	11	13
81	Biological and chemical sensors based on graphene materials. <i>Chemical Society Reviews</i> , 2012 , 41, 2283	- 35087 5	1384
80	A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. <i>Chemical Communications</i> , 2012 , 48, 6490-2	5.8	145
79	Template-free synthesis of large anisotropic gold nanostructures on reduced graphene oxide. <i>Nanoscale</i> , 2012 , 4, 3055-9	7.7	24
78	On-chip diameter-dependent conversion of metallic to semiconducting single-walled carbon nanotubes by immersion in 2-ethylanthraquinone. <i>RSC Advances</i> , 2012 , 2, 1275-1281	3.7	4
77	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. <i>Carbon</i> , 2012 , 50, 1517-1522	10.4	43
76	Kainate receptors mediate regulated exocytosis of secretory phospholipase A(2) in SH-SY5Y neuroblastoma cells. <i>NeuroSignals</i> , 2012 , 20, 72-85	1.9	7
75	Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips. <i>Nanoscale</i> , 2011 , 3, 4854-8	7.7	33
74	Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. <i>ACS Nano</i> , 2011 , 5, 1990-4	16.7	251
73	Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. <i>Nanoscale</i> , 2011 , 3, 4323-9	7.7	104
72	Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. <i>Analytical Chemistry</i> , 2011 , 83, 1124-30	7.8	121
71	The crosstalks between adipokines and catecholamines. <i>Molecular and Cellular Endocrinology</i> , 2011 , 332, 261-70	4.4	19
70	Transparent, flexible, all-reduced graphene oxide thin film transistors. <i>ACS Nano</i> , 2011 , 5, 5038-44	16.7	284

69	Graphene-based biosensors for detection of bacteria and their metabolic activities. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12358		294
68	Fabrication and characterization of recyclable carbon nanotube/polyvinyl butyral composite fiber. <i>Composites Science and Technology</i> , 2011 , 71, 1665-1670	8.6	24
67	The formation of a carbon nanotubegraphene oxide coreBhell structure and its possible applications. <i>Carbon</i> , 2011 , 49, 5071-5078	10.4	118
66	A graphene nanoribbon network and its biosensing application. <i>Nanoscale</i> , 2011 , 3, 5156-60	7.7	72
65	Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2746-50	11.8	49
64	Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3881-6	11.8	180
63	Labeling and Tracking P2 Purinergic Receptors in Living Cells Using ATP-Conjugated Quantum Dots. <i>Advanced Functional Materials</i> , 2011 , 21, 2776-2780	15.6	10
62	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. <i>Nanoscale</i> , 2011 , 3, 2158-61	7.7	218
61	Fabrication and Characterization of Networked Graphene Devices Based on Ultralarge Single-Layer Graphene Sheets. <i>IEEE Nanotechnology Magazine</i> , 2011 , 10, 467-471	2.6	3
60	Micro- and nanotechnologies for study of cell secretion. <i>Analytical Chemistry</i> , 2011 , 83, 4393-406	7.8	58
59	Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method. <i>Nanoscale</i> , 2011 , 3, 2469-71	7.7	11
58	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6975-6979	3.8	14
57	Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4257-61	11.8	20
56	Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. <i>Carbon</i> , 2011 , 49, 3672-3678	10.4	135
55	One-step growth of graphenellarbon nanotube hybrid materials by chemical vapor deposition. <i>Carbon</i> , 2011 , 49, 2944-2949	10.4	162
54	In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing. <i>Nanoscale Research Letters</i> , 2011 , 6, 60	5	74
53	Vesicular storage, vesicle trafficking, and secretion of leptin and resistin: the similarities, differences, and interplays. <i>Journal of Endocrinology</i> , 2010 , 206, 27-36	4.7	33
52	Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion. <i>Journal of Biomedical Optics</i> , 2010 , 15, 057001	3.5	3

51	Aromatic Molecules Doping in Single-Layer Graphene Probed by Raman Spectroscopy and Electrostatic Force Microscopy. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01AH04	1.4	10
50	Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane. <i>Nanoscale</i> , 2010 , 2, 1474-9	7.7	12
49	Carbohydrate functionalized carbon nanotubes and their applications. <i>Chemical Society Reviews</i> , 2010 , 39, 2925-34	58.5	78
48	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2164-9	3.6	155
47	Effects of cholesterol oxidation products on exocytosis. <i>Neuroscience Letters</i> , 2010 , 476, 36-41	3.3	27
46	Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. <i>ACS Nano</i> , 2010 , 4, 3201-8	16.7	529
45	Nanoelectronic biosensors based on CVD grown graphene. <i>Nanoscale</i> , 2010 , 2, 1485-8	7.7	354
44	Interfacing live cells with nanocarbon substrates. <i>Langmuir</i> , 2010 , 26, 2244-7	4	271
43	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. <i>Integrative Biology (United Kingdom)</i> , 2010 , 2, 250-7	3.7	10
42	Differential effects of lysophospholipids on exocytosis in rat PC12 cells. <i>Journal of Neural Transmission</i> , 2010 , 117, 301-8	4.3	16
41	Changes in brain cholesterol metabolome after excitotoxicity. <i>Molecular Neurobiology</i> , 2010 , 41, 299-37	136.2	43
40	Cloning and characterization of novel low molecular weight glutenin subunit genes from two Aegilops species with the C and D genomes. <i>Genetic Resources and Crop Evolution</i> , 2010 , 57, 881-890	2	4
39	Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. <i>Advanced Materials</i> , 2010 , 22, 1649-53	24	450
38	Non-invasive detection of cellular bioelectricity based on carbon nanotube devices for high-throughput drug screening. <i>Advanced Materials</i> , 2010 , 22, 3199-203	24	24
37	Sugar-based synthesis of Tamiflu and its inhibitory effects on cell secretion. <i>Chemistry - A European Journal</i> , 2010 , 16, 4533-40	4.8	45
36	Graphene supported SnBb@carbon core-shell particles as a superior anode for lithium ion batteries. <i>Electrochemistry Communications</i> , 2010 , 12, 1302-1306	5.1	122
35	Integrating carbon nanotubes and lipid bilayer for biosensing. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1834-7	11.8	39
34	Effective doping of single-layer graphene from underlying SiO2 substrates. <i>Physical Review B</i> , 2009 , 79,	3.3	160

(2008-2009)

33	Nanotopographic Carbon Nanotube Thin-Film Substrate Freezes Lateral Motion of Secretory Vesicles. <i>Advanced Materials</i> , 2009 , 21, 790-793	24	20
32	Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2723-6	16.4	134
31	PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. <i>Pflugers Archiv European Journal of Physiology</i> , 2009 , 458, 1137-49	4.6	8
30	Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2716-20	11.8	51
29	Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures. <i>Small</i> , 2009 , 5, 1043-50	11	4
28	Doping single-layer graphene with aromatic molecules. <i>Small</i> , 2009 , 5, 1422-6	11	499
27	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. <i>Carbon</i> , 2009 , 47, 1867-1870	10.4	147
26	Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 380, 371-6	3.4	19
25	Roles of cholesterol in vesicle fusion and motion. <i>Biophysical Journal</i> , 2009 , 97, 1371-80	2.9	73
24	Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays. <i>Nanoscale</i> , 2009 , 1, 159-63	7.7	44
23	Symmetry breaking of graphene monolayers by molecular decoration. <i>Physical Review Letters</i> , 2009 , 102, 135501	7.4	213
22	In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10842-10846	3.8	650
21	One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2868-2874	9.6	406
20	Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. <i>Chemical Communications</i> , 2009 , 7182-4	5.8	29
19	CMOS-Compatible nanowire sensor arrays for detection of cellular bioelectricity. <i>Small</i> , 2009 , 5, 208-12	11	88
18	Label-Free Electronic Detection of DNA Using Simple Double-Walled Carbon Nanotube Resistors. Journal of Physical Chemistry C, 2008 , 112, 9891-9895	3.8	35
17	Assessment of (n,m) Selectively Enriched Small Diameter Single-Walled Carbon Nanotubes by Density Differentiation from Cobalt-Incorporated MCM-41 for Macroelectronics. <i>Chemistry of Materials</i> , 2008 , 20, 7417-7424	9.6	15
16	Effects of substrates on photocurrents from photosensitive polymer coated carbon nanotube networks. <i>Applied Physics Letters</i> , 2008 , 92, 103310	3.4	9

15	Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. <i>Pflugers Archiv European Journal of Physiology</i> , 2008 , 457, 211-22	4.6	12
14	Electrosynthesis and characterization of polypyrrole/Au nanocomposite. <i>Electrochimica Acta</i> , 2007 , 52, 2845-2849	6.7	80
13	Nanopore unstacking of single-stranded DNA helices. <i>Small</i> , 2007 , 3, 1204-8	11	21
12	Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. <i>Brain Research Reviews</i> , 2007 , 56, 443-71		86
11	Differential effects of ceramide species on exocytosis in rat PC12 cells. <i>Experimental Brain Research</i> , 2007 , 183, 241-7	2.3	22
10	PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. <i>Nano Letters</i> , 2004 , 4, 2293-2298	11.5	300
9	Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. <i>Nano Letters</i> , 2004 , 4, 1333-1337	11.5	352
8	Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. <i>Analytical Chemistry</i> , 2003 , 75, 518-24	7.8	77
7	A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 17060-5	11.5	76
6	Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectral-Response. <i>Laser and Photonics Reviews</i> ,2100591	8.3	7
5	Analogous Optical Activity in Free Space Using a Single Pancharatnam B erry Phase Element. <i>Laser and Photonics Reviews</i> ,2100291	8.3	3
4	Visible and Online Detection of Near-Infrared Optical Vortices via Nonlinear Photonic Crystals. Advanced Optical Materials, 2101098	8.1	3
3	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. <i>Nano Research</i> ,1	10	1
2	Full-Stokes Polarimetry for Visible Light Enabled by an All-Dielectric Metasurface. <i>Advanced Photonics Research</i> ,2100373	1.9	2
1	The transcription factor HcERF4 confers salt and drought tolerance in kenaf (Hibiscus cannabinus L.). <i>Plant Cell, Tissue and Organ Culture</i> ,1	2.7	О