Li-Chong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719181/publications.pdf

Version: 2024-02-01

37	2,331	22	32
papers	citations	h-index	g-index
37 all docs	37 does citations	37 times ranked	4000 citing authors

#	Article	IF	Citations
1	Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. Journal of Biomedical Materials Research - Part A, 2022, 110, 1238-1250.	4.0	10
2	Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioactive Materials, 2021, 6, 447-459.	15.6	24
3	Bacterial cell–biomaterials interactions. , 2020, , 11-42.		O
4	New crossâ€linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3250-3260.	3.4	11
5	Increased circulating microparticles in streptozotocinâ€induced diabetes propagate inflammation contributing to microvascular dysfunction. Journal of Physiology, 2019, 597, 781-798.	2.9	9
6	Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomaterialia, 2019, 84, 77-87.	8.3	61
7	A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomaterialia, 2018, 67, 87-98.	8.3	28
8	Liquid Biopsy of Vitreous Reveals an Abundant Vesicle Population Consistent With the Size and Morphology of Exosomes. Translational Vision Science and Technology, 2018, 7, 6.	2.2	86
9	Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces., 2017, 105, 668-678.		45
10	Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomaterialia, 2017, 51, 53-65.	8.3	66
11	Surface dependent contact activation of factor XII and blood plasma coagulation induced by mixed thiol surfaces. Biointerphases, 2017, 12, 02D410.	1.6	15
12	Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles. Acta Biomaterialia, 2017, 58, 205-213.	8.3	45
13	Antimicrobial nitric oxide releasing surfaces based on S-nitroso-N-acetylpenicillamine impregnated polymers combined with submicron-textured surface topography. Biomaterials Science, 2017, 5, 1265-1278.	5.4	30
14	Reduction of Endothelial Nitric Oxide Increases the Adhesiveness of Constitutive Endothelial Membrane ICAM-1 through Src-Mediated Phosphorylation. Frontiers in Physiology, 2017, 8, 1124.	2.8	34
15	The role of substrate topography on the cellular uptake of nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 488-495.	3.4	31
16	<i>Staphylococcus epidermidis</i> adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomedical Materials (Bristol), 2014, 9, 035003.	3.3	55
17	CHAPTER 13. Bacterial Adhesion and Interaction with Biomaterial Surfaces. RSC Smart Materials, 2014, , 363-398.	0.1	0
18	Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 124, 49-68.	5.0	290

#	Article	IF	CITATIONS
19	Substrate curvature sensing through Myosin IIa upregulates early osteogenesis. Integrative Biology (United Kingdom), 2013, 5, 1407.	1.3	45
20	Measurement of Time-Dependent Functional Activity of Adsorbed Fibrinogen and Platelet Adhesion on Material Surfaces. ACS Symposium Series, 2012, , 373-394.	0.5	1
21	Effects of Biomaterial Chemical Heterogeneity on Fibrinogen Activity-Platelet Adhesion Relationships. Biophysical Journal, 2012, 102, 716a.	0.5	0
22	Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomaterialia, 2012, 8, 72-81.	8.3	143
23	Effects of Plasma Proteins on <i>Staphylococcus epidermidis</i> RP62A Adhesion and Interaction with Platelets on Polyurethane Biomaterial Surfaces. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 487-498.	0.5	15
24	Effects of membrane cholesterol depletion and GPIâ€anchored protein reduction on osteoblastic mechanotransduction. Journal of Cellular Physiology, 2011, 226, 2350-2359.	4.1	20
25	Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion. Acta Biomaterialia, 2010, 6, 1938-1947.	8.3	37
26	Microphase separation structure influences protein interactions with poly(urethane urea) surfaces. Journal of Biomedical Materials Research - Part A, 2010, 92A, 126-136.	4.0	23
27	Atomic Force Microscopy Studies of the Initial Interactions between Fibrinogen and Surfaces. Langmuir, 2009, 25, 3675-3681.	3.5	39
28	Atomic Force Microscopy Methods for Characterizing Protein Interactions with Microphase-Separated Polyurethane Biomaterials., 2009,, 43-67.		1
29	A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities. Macromolecules, 2008, 41, 9767-9776.	4.8	154
30	Characterization of surface microphase structures of poly(urethane urea) biomaterials by nanoscale indentation with AFM. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 353-368.	3.5	17
31	Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 2007, 28, 3273-3283.	11.4	586
32	Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. Journal of Biomechanics, 2007, 40, 2865-2871.	2.1	73
33	Interaction Forces Measured Using AFM between Colloids and Surfaces Coated with Both Dextran and Protein. Langmuir, 2006, 22, 4720-4727.	3.5	25
34	Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2006, 48, 84-94.	5.0	24
35	Application of atomic force microscopy in the study of microbiologically influenced corrosion. Materials Characterization, 2002, 48, 195-203.	4.4	43
36	Influence of Cr3+ on microbial cluster formation in biofilm and on steel corrosion. Biotechnology Letters, 2000, 22, 801-805.	2.2	18

#	Article	IF	CITATIONS
37	Quantification of bacterial adhesion forces using atomic force microscopy (AFM). Journal of Microbiological Methods, 2000, 40, 89-97.	1.6	227