Stella E Tsirka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191709/publications.pdf

Version: 2024-02-01

		38742	3	6028
125	10,047	50		97
papers	citations	h-index		g-index
128	128	128		12823
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Preclinical model of multiple sclerosis: Methods in autoimmune demyelination. Methods in Cell Biology, 2022, 168, 67-86.	1.1	1
2	Preclinical model of multiple sclerosis: Focal, chemical or viral demyelination. Methods in Cell Biology, 2022, 168, 87-102.	1.1	O
3	Chronic stress disrupts the homeostasis and progeny progression of oligodendroglial lineage cells, associating immune oligodendrocytes with prefrontal cortex hypomyelination. Molecular Psychiatry, 2022, 27, 2833-2848.	7.9	22
4	Shaping functionality in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2203234119.	7.1	0
5	ADAM10 facilitates rapid neural stem cell cycling and proper positioning within the subventricular zone niche via JAMC/RAP1Gap signaling. Neural Regeneration Research, 2022, 17, 2472.	3.0	4
6	Lucanthone Targets Lysosomes to Perturb Glioma Proliferation, Chemoresistance and Stemness, and Slows Tumor Growth In Vivo. Frontiers in Oncology, 2022, 12, 852940.	2.8	6
7	Beyond Myelination: Possible Roles of the Immune Proteasome in Oligodendroglial Homeostasis and Dysfunction. Frontiers in Neuroscience, 2022, 16, .	2.8	4
8	Studies on the function of myeloidâ€derived Neuropilinâ€1 in glioma: a focus on tumor hypoxia. FASEB Journal, 2022, 36, .	0.5	0
9	Immune Phenotypes of Oligodendroglial‣ineage Cells in MDD and in Response to Chronic Stressâ€Induced Microglial Inflammation. FASEB Journal, 2022, 36, .	0.5	O
10	Prophylactic Administration of Cannabidiol Reduces Microglial Inflammatory Response to Kainate-Induced Seizures and Neurogenesis. Neuroscience, 2022, 500, 1-11.	2.3	7
11	Neuroinflammatory changes of the normal brain tissue in cured mice following combined radiation and anti-PD-1 blockade therapy for glioma. Scientific Reports, 2021, 11, 5057.	3.3	4
12	A distinct microglial subset at the <scp>tumor–stroma</scp> interface of glioma. Glia, 2021, 69, 1767-1781.	4.9	18
13	Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nature Communications, 2021, 12, 4646.	12.8	47
14	Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration. Brain Communications, 2021, 3, fcab271.	3.3	8
15	Immunosuppression in Multiple Sclerosis and Other Neurologic Disorders. Handbook of Experimental Pharmacology, 2021, , 245-265.	1.8	1
16	Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 175-192.	2.5	15
17	Guanabenz modulates microglia and macrophages during demyelination. Scientific Reports, 2020, 10, 19333.	3.3	14
18	Interactions between Tumor Cells, Neurons, and Microglia in the Glioma Microenvironment. International Journal of Molecular Sciences, 2020, 21, 8476.	4.1	52

#	Article	IF	CITATIONS
19	Sexual Dimorphism of Neuroimmune Cells and Its Impact on the Central Nervous System: a Special Issue. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 152-153.	2.5	O
20	Repolarized macrophages, induced by intermediate stereotactic dose radiotherapy and immune checkpointÂblockade, contribute to long-term survival in glioma-bearing mice. Journal of Neuro-Oncology, 2020, 147, 547-555.	2.9	23
21	Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy. Neuroimmunology and Neuroinflammation, 2020, 2020, 234-247.	1.4	9
22	A Rigorous Quantitative Approach to Analyzing Phagocytosis Assays. Bio-protocol, 2020, 10, .	0.4	4
23	Cardiopulmonary Inflammatory Response to Meteorite Dust Exposure – Implications for Human Health on Earth and Beyond. , 2020, , .		0
24	Increased Behavioral Deficits and Inflammation in a Mouse Model of Co-Morbid Traumatic Brain Injury and Post-Traumatic Stress Disorder. ASN Neuro, 2020, 12, 175909142097956.	2.7	6
25	Depression Mediated By Inflammatory Responses To Chronic Stress. FASEB Journal, 2020, 34, 1-1.	0.5	1
26	Pifithrinâ€Î¼ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neuroscience and Therapeutics, 2019, 25, 200-214.	3.9	8
27	Lunar soil simulants alter macrophage survival and function. Journal of Applied Toxicology, 2019, 39, 1413-1423.	2.8	4
28	Proliferation and Differentiation in the Adult Subventricular Zone Are Not Affected by CSF1R Inhibition. Frontiers in Cellular Neuroscience, 2019, 13, 97.	3.7	60
29	BSSE: An open-source image processing tool for miniaturized microscopy. Optics Express, 2019, 27, 17620.	3.4	4
30	Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGF \hat{I}^2) Production in Regulatory T-Cells. Journal of Medicinal Chemistry, 2018, 61, 4135-4154.	6.4	65
31	Fatty-acid–binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3482-3487.	7.1	59
32	Deletion of Neuropilin 1 from Microglia or Bone Marrow–Derived Macrophages Slows Glioma Progression. Cancer Research, 2018, 78, 685-694.	0.9	48
33	Advances in immunotherapeutic research for glioma therapy. Journal of Neurology, 2018, 265, 741-756.	3.6	77
34	Tuftsin Combines With Remyelinating Therapy and Improves Outcomes in Models of CNS Demyelinating Disease. Frontiers in Immunology, 2018, 9, 2784.	4.8	19
35	Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Experimental Neurology, 2018, 307, 24-36.	4.1	115
36	Visualizing the Brain's Astrocytes with Diverse Chemical Scaffolds. ACS Chemical Biology, 2018, 13, 1493-1498.	3.4	13

3

#	Article	IF	Citations
37	Mitigation of radiation myelopathy and reduction of microglial infiltration by Ramipril, ACE inhibitor. Spinal Cord, 2018, 56, 733-740.	1.9	9
38	Expression of neuropilin-1 is linked to glioma associated microglia and macrophages and correlates with unfavorable prognosis in high grade gliomas. Oncotarget, 2018, 9, 35655-35665.	1.8	30
39	Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS Allergy and Immunology, 2018, 2, 24-44.	0.5	2
40	The role of Iraqi dust in inducing lung injury in United States soldiers—An interdisciplinary study. GeoHealth, 2017, 1, 237-246.	4.0	12
41	The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity. International Journal of Molecular Sciences, 2017, 18, 504.	4.1	65
42	Neurogenic to Gliogenic Fate Transition Perturbed by Loss of HMGB2. Frontiers in Molecular Neuroscience, 2017, 10, 153.	2.9	19
43	Absence of cytotoxicity towards microglia of iron oxide (α-Fe2O3) nanorhombohedra. Toxicology Research, 2016, 5, 836-847.	2.1	7
44	Tuftsinâ€driven experimental autoimmune encephalomyelitis recovery requires neuropilinâ€1. Glia, 2016, 64, 923-936.	4.9	30
45	Dynamic microglial modulation of spatial learning and social behavior. Brain, Behavior, and Immunity, 2016, 55, 6-16.	4.1	106
46	Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget, 2016, 7, 9801-9814.	1.8	53
47	Defining differential roles for microglia and infiltrating macrophages in the growth and neovascularization of glioma. Translational Cancer Research, 2016, 5, S648-S651.	1.0	2
48	Fatty Acid-binding Proteins (FABPs) Are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD). Journal of Biological Chemistry, 2015, 290, 8711-8721.	3.4	228
49	Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience, 2015, 297, 11-21.	2.3	15
50	Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1. Journal of Neuroscience, 2015, 35, 12693-12702.	3.6	29
51	Metal-sulfide mineral ores, Fenton chemistry and disease – Particle induced inflammatory stress response in lung cells. International Journal of Hygiene and Environmental Health, 2015, 218, 19-27.	4.3	17
52	The Experimental Autoimmune Encephalomyelitis Disease Course Is Modulated by Nicotine and Other Cigarette Smoke Components. PLoS ONE, 2014, 9, e107979.	2.5	54
53	Monocyte chemoattractant protein-1 and the blood–brain barrier. Cellular and Molecular Life Sciences, 2014, 71, 683-697.	5 . 4	143
54	Cell-Culture Models of the Blood–Brain Barrier. Stroke, 2014, 45, 2514-2526.	2.0	129

#	Article	IF	Citations
55	Mouse monocyte chemoattractant protein 1 (MCP1) functions as a monomer. International Journal of Biochemistry and Cell Biology, $2014, 55, 51-59$.	2.8	5
56	Improving repair and regeneration after spinal cord injury through combinatorial therapy (LB558). FASEB Journal, 2014, 28, LB558.	0.5	0
57	Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Science, 2013, 11, 18.	1.7	33
58	Inflammatory stress response in A549 cells as a result of exposure to coal: Evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis. Chemosphere, 2013, 93, 1216-1221.	8.2	20
59	Tuftsin signals through its receptor neuropilinâ€l via the transforming growth factor beta pathway. Journal of Neurochemistry, 2013, 127, 394-402.	3.9	44
60	Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene, 2013, 32, 4064-4077.	5.9	95
61	Culturing Microglia from the Neonatal and Adult Central Nervous System. Journal of Visualized Experiments, 2013, , 50647.	0.3	30
62	Microglia: An Active Player in the Regulation of Synaptic Activity. Neural Plasticity, 2013, 2013, 1-9.	2.2	46
63	Microglia Actively Regulate the Number of Functional Synapses. PLoS ONE, 2013, 8, e56293.	2.5	202
64	Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2. PLoS ONE, 2013, 8, e84838.	2.5	60
65	The Annexin A2/S100A10 System in Health and Disease: Emerging Paradigms. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-13.	3.0	85
66	p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. Cell, 2012, 149, 1536-1548.	28.9	644
67	Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials. Geochemical Transactions, 2012, 13, 4.	0.7	11
68	Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 2012, 9, 159.	7.2	54
69	Tuftsin Promotes an Anti-Inflammatory Switch and Attenuates Symptoms in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2012, 7, e34933.	2.5	38
70	The CCL2â€CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia, 2012, 60, 908-918.	4.9	64
71	Chemokines and Their Receptors in Intracerebral Hemorrhage. Translational Stroke Research, 2012, 3, 70-79.	4.2	22
72	Microglial inhibitory factor (MIF/TKP) mitigates secondary damage following spinal cord injury. Neurobiology of Disease, 2012, 47, 295-309.	4.4	35

#	Article	IF	CITATIONS
73	Animal Models of MS Reveal Multiple Roles of Microglia in Disease Pathogenesis. Neurology Research International, 2011, 2011, 1-9.	1.3	91
74	Mouse MCP1 Câ€terminus inhibits human MCP1â€induced chemotaxis and BBB compromise. Journal of Neurochemistry, 2011, 118, 215-223.	3.9	9
75	Microglia/macrophages promote glioma progression. Glia, 2011, 59, 472-485.	4.9	188
76	Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood–brain barrier disruption. Journal of Cell Science, 2011, 124, 1486-1495.	2.0	72
77	Axonal Regrowth after Spinal Cord Injury via Chondroitinase and the Tissue Plasminogen Activator (tPA)/Plasmin System. Journal of Neuroscience, 2011, 31, 14931-14943.	3.6	60
78	Neuroimaging in Animal Seizure Models with 18FDG-PET. Epilepsy Research & Treatment, 2011, 2011, 1-8.	1.4	8
79	Annexin A2 Promotes Glioma Cell Invasion and Tumor Progression. Journal of Neuroscience, 2011, 31, 14346-14360.	3.6	99
80	Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiology of Disease, 2010, 39, 85-97.	4.4	79
81	Decreased serotonin levels associated with behavioral disinhibition in tissue plasminogen activator deficient (tPAâ^'/â^') mice. Brain Research, 2010, 1326, 135-142.	2.2	18
82	p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death and Differentiation, 2010, 17, 1816-1829.	11.2	102
83	Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4. Journal of Neuroscience, 2010, 30, 6538-6547.	3.6	27
84	The C Terminus of Mouse Monocyte Chemoattractant Protein 1 (MCP1) Mediates MCP1 Dimerization while Blocking Its Chemotactic Potency. Journal of Biological Chemistry, 2010, 285, 31509-31516.	3.4	28
85	Microglia Shape Adult Hippocampal Neurogenesis through Apoptosis-Coupled Phagocytosis. Cell Stem Cell, 2010, 7, 483-495.	11.1	1,286
86	Endothelial NOSâ€deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis. Glia, 2009, 57, 1204-1215.	4.9	41
87	tPAâ€mediated generation of plasmin is catalyzed by the proteoglycan NG2. Glia, 2008, 56, 177-189.	4.9	18
88	Tissue-type plasminogen activator as a therapeutic target in stroke. Expert Opinion on Therapeutic Targets, 2008, 12, 159-170.	3.4	110
89	Proteolytic Activation of Monocyte Chemoattractant Protein-1 by Plasmin Underlies Excitotoxic Neurodegeneration in Mice. Journal of Neuroscience, 2007, 27, 1738-1745.	3.6	78
90	Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurgical Focus, 2007, 22, 1-7.	2.3	92

#	Article	IF	CITATIONS
91	Nitric Oxide Synthase Isoforms Undertake Unique Roles During Excitotoxicity. Stroke, 2007, 38, 1938-1945.	2.0	32
92	A novel approach for imaging brain–behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. NeuroImage, 2007, 38, 34-42.	4.2	109
93	Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunology, 2007, 8, 10.	2.2	85
94	PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy. Synapse, 2006, 59, 119-121.	1.2	55
95	Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. Journal of Cell Science, 2006, 119, 339-349.	2.0	104
96	Contribution of Extracellular Proteolysis and Microglia to Intracerebral Hemorrhage. Neurocritical Care, 2005, 3, 077-085.	2.4	104
97	Tissue plasminogen activator in brain tissues infected with transmissible spongiform encephalopathies. Neurobiology of Disease, 2005, 20, 519-527.	4.4	12
98	Tissue plasminogen activator and glial function. Glia, 2005, 49, 177-183.	4.9	52
99	Fibrin-modifying serine proteases thrombin, tPA, and plasmin in ischemic stroke: A review. Glia, 2005, 50, 340-350.	4.9	81
100	Phospholipase D1-Promoted Release of Tissue Plasminogen Activator Facilitates Neurite Outgrowth. Journal of Neuroscience, 2005, 25, 1797-1805.	3.6	44
101	Tuftsin Fragment 1–3 Is Beneficial When Delivered After the Induction of Intracerebral Hemorrhage. Stroke, 2005, 36, 613-618.	2.0	137
102	Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain, 2005, 128, 1622-1633.	7.6	295
103	tPA as an effector of microglial activation. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S686-S686.	4.3	0
104	Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth. Glia, 2004, 46, 74-83.	4.9	37
105	Modulation of zinc toxicity by tissue plasminogen activator. Molecular and Cellular Neurosciences, 2004, 25, 162-171.	2.2	24
106	Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Annals of Neurology, 2003, 54, 655-664.	5.3	168
107	Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience, 2003, 116, 359-371.	2.3	84
108	Cell Type-Specific Roles for Tissue Plasminogen Activator Released by Neurons or Microglia after Excitotoxic Injury. Journal of Neuroscience, 2003, 23, 3234-3242.	3.6	120

#	Article	IF	CITATIONS
109	Tissue plasminogen activator as a modulator of neuronal survival and function. Biochemical Society Transactions, 2002, 30, 222-225.	3.4	63
110	Involvement of Tissue Plasminogen Activator in Onset and Effector Phases of Experimental Allergic Encephalomyelitis. Journal of Neuroscience, 2002, 22, 10781-10789.	3.6	73
111	Tissue Plasminogen Activator Mediates Microglial Activation via Its Finger Domain through Annexin II. Journal of Neuroscience, 2002, 22, 3352-3358.	3.6	192
112	Microglial activation and recruitment, but not proliferation, suffice to mediate neurodegeneration. Cell Death and Differentiation, 2002, 9, 801-806.	11,2	61
113	Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development (Cambridge), 2002, 129, 2043-50.	2.5	13
114	Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. NeuroReport, 2001, 12, 4117-4120.	1.2	47
115	The Tissue Plasminogen Activator (Tpa/Plasmin) Extracellular Proteolytic System Regulates Seizure-Induced Hippocampal Mossy Fiber Outgrowth through a Proteoglycan Substrate. Journal of Cell Biology, 2000, 148, 1295-1304.	5.2	182
116	Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nature Medicine, 1998, 4, 228-231.	30.7	623
117	Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Current Biology, 1998, 8, 19-25.	3.9	293
118	An Extracellular Proteolytic Cascade Promotes Neuronal Degeneration in the Mouse Hippocampus. Journal of Neuroscience, 1997, 17, 543-552.	3.6	410
119	Removal of tissue plasminogen activator does not protect against neuronal degeneration in the cerebellum of the weaver mouse. Brain Research, 1997, 772, 233-238.	2.2	7
120	Clinical implications of the involvement of tPA in neuronal cell death. Journal of Molecular Medicine, 1997, 75, 341-347.	3.9	67
121	Isolation and Characterization of Two Novel, Cytoplasmically Polyadenylated, Oocyte-Specific, Mouse Maternal RNAs. Developmental Biology, 1996, 175, 132-141.	2.0	35
122	Neuronal cell death and tPA. Nature, 1996, 384, 123-124.	27.8	223
123	Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature, 1995, 377, 340-344.	27.8	651
124	Recovery from ICH – Potential Targets. , 0, , .		0
125	Breast-to-brain metastasis: a focus on the pre-metastatic niche. , 0, , .		1