Dmitry Baitin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191682/publications.pdf

Version: 2024-02-01

758635 839053 25 371 12 18 h-index citations g-index papers 27 27 27 362 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A novel function of DNA polymerase ζ regulated by PCNA. EMBO Journal, 2006, 25, 4316-4325.	3.5	94
2	Blocking the RecA activity and SOS-response in bacteria with a short \hat{l}_{\pm} -helical peptide. Nucleic Acids Research, 2017, 45, 9788-9796.	6.5	30
3	Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Research, 2019, 47, 10553-10563.	6.5	26
4	Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa Rec Aprotein in Escherichia colicells. Molecular Microbiology, 1998, 27, 727-738.	1.2	24
5	Efficient Strand Transfer by the RadA Recombinase from the Hyperthermophilic Archaeon Desulfurococcus amylolyticus. Journal of Bacteriology, 2000, 182, 130-134.	1.0	21
6	Analytical model for determination of parameters of helical structures in solution by small angle scattering: comparison of RecA structures by SANS. FEBS Letters, 2003, 537, 182-186.	1.3	19
7	SSB Antagonizes RecX-RecA Interaction. Journal of Biological Chemistry, 2008, 283, 14198-14204.	1.6	18
8	Structure of RecX protein complex with the presynaptic RecA filament: Molecular dynamics simulations and small angle neutron scattering. FEBS Letters, 2014, 588, 948-955.	1.3	16
9	Deinococcus radiodurans RecA nucleoprotein filaments characterized at the single-molecule level with optical tweezers. Biochemical and Biophysical Research Communications, 2015, 466, 426-430.	1.0	15
10	Hyper-recombinogenic RecA Protein from Pseudomonas aeruginosa with Enhanced Activity of its Primary DNA Binding Site. Journal of Molecular Biology, 2003, 328, 1-7.	2.0	13
11	Distinguishing Characteristics of Hyperrecombinogenic RecA Protein from Pseudomonas aeruginosa Acting in Escherichia coli. Journal of Bacteriology, 2006, 188, 5812-5820.	1.0	13
12	Fluorescence and Excitation Escherichia Coli RecA Protein Spectra Analyzed Separately for Tyrosine and Tryptophan Residues. Archives of Biochemistry and Biophysics, 2000, 376, 124-140.	1.4	12
13	Modulating cellular recombination potential through alterations in RecA structure and regulation. Molecular Microbiology, 2010, 78, 1523-1538.	1.2	12
14	Targeting evolution of antibiotic resistance by SOS response inhibition. Computational and Structural Biotechnology Journal, 2021, 19, 777-783.	1.9	12
15	Two RecA Protein Types That Mediate Different Modes of Hyperrecombination. Journal of Bacteriology, 2008, 190, 3036-3045.	1.0	10
16	A recombinational defect in the Câ€ŧerminal domain of Escherichia coli RecA2278â€5 protein is compensated by protein binding to ATP. Molecular Microbiology, 1997, 23, 255-265.	1.2	9
17	DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype. PLoS ONE, 2016, 11, e0154137.	1.1	5
18	Single-Molecule Insights into ATP-Dependent Conformational Dynamics of Nucleoprotein Filaments of Deinococcus radiodurans RecA. International Journal of Molecular Sciences, 2020, 21, 7389.	1.8	4

#	Article	IF	CITATION
19	Singleâ€molecule analysis reveals two distinct states of the compressed RecA filament on singleâ€stranded DNA. FEBS Letters, 2020, 594, 3464-3476.	1.3	4
20	A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. ELife, 0, 11 , .	2.8	4
21	Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action. Molecular Biology, 2011, 45, 500-507.	0.4	3
22	Enzymatic control of homologous recombination and hyperrecombination in Escherichia coli. Molecular Biology, 2013, 47, 181-191.	0.4	2
23	Deinococcus radiodurans RecX and Escherichia coli RecX proteins are capable to replace each other in vivo and in vitro. Russian Journal of Genetics, 2016, 52, 257-262.	0.2	1
24	The new mechanism of the frequency of recombination exchanges increase by improving the synaptase activity of the RecA protein from Escherichia coli. Doklady Biochemistry and Biophysics, 2010, 432, 120-122.	0.3	0
25	Real-Time RecA Filament Disassembly in the Presence of RecX Monitored using Single-Molecule Manipulation by Optical Tweezers. Biophysical Journal, 2015, 108, 69a.	0.2	O