Yang-Long Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191588/publications.pdf

Version: 2024-02-01

47006 53230 8,122 134 47 85 citations h-index g-index papers 134 134 134 6381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. Journal of Rare Earths, 2023, 41, 523-530.	4.8	14
2	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	4.8	10
3	Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion. Journal of Rare Earths, 2022, 40, 1462-1470.	4.8	6
4	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	4.1	16
5	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	5.0	6
6	Catalytic combustion of CVOCs over MoOx/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 310, 121240.	20.2	28
7	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	3 . 5	4
8	Oxy-Anionic Doping: A New Strategy for Improving Selectivity of Ru/CeO ₂ with Synergetic Versatility and Thermal Stability for Catalytic Oxidation of Chlorinated Volatile Organic Compounds. Environmental Science & Environmental Science	10.0	21
9	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	7.1	7
10	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Environmental Sc	10.0	65
11	Catalytic mechanism and pathways of 1 , 2 -dichloropropane oxidation over LaMnO3 perovskite: An experimental and DFT study. Journal of Hazardous Materials, 2021, 402, 123473.	12.4	42
12	Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity. Applied Catalysis B: Environmental, 2021, 282, 119577.	20.2	85
13	Catalytic combustion of vinyl chloride emissions over Co3O4 catalysts with different crystallite sizes. Rare Metals, 2021, 40, 817-827.	7.1	15
14	Nickel oxide regulating surface oxygen to promote formaldehyde oxidation on manganese oxide catalysts. Catalysis Science and Technology, 2021, 11, 7110-7124.	4.1	7
15	Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts. Rare Metals, 2021, 40, 1056-1066.	7.1	10
16	Spinel Co3O4 oxides-support synergistic effect on catalytic oxidation of toluene. Applied Catalysis A: General, 2021, 614, 118044.	4.3	14
17	Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Industrial & Engineering Chemistry Research, 2021, 60, 7132-7144.	3.7	13
18	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i></i> Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Description of the Environmental S	10.0	97

#	Article	IF	CITATIONS
19	Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion. Chemical Engineering Journal, 2021, 416, 129150.	12.7	36
20	Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Applied Surface Science, 2021, 556, 149766.	6.1	26
21	A new strategy to improve catalytic activity for chlorinated volatile organic compounds oxidation over cobalt oxide: Introduction of strontium carbonate. Journal of the Indian Chemical Society, 2021, 98, 100116.	2.8	3
22	Insight into the Surface-Tuned Activity and Cl $<$ sub $>$ 2 $<$ /sub $>$ /HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co $<$ sub $>$ 3 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ (110) versus (001): A DFT Study. Journal of Physical Chemistry C, 2021, 125, 16975-16983.	3.1	4
23	NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental, 2021, 291, 120074.	20.2	93
24	Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant. Applied Catalysis B: Environmental, 2021, 298, 120606.	20.2	78
25	Robust nanosheet-assembled Al ₂ O ₃ -supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. New Journal of Chemistry, 2021, 45, 21750-21762.	2.8	12
26	Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Applied Catalysis A: General, 2021, 628, 118398.	4.3	14
27	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Description of the Induction Period and Its Excellent Resistance to Coking.	8.0	18
28	Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Applied Catalysis B: Environmental, 2020, 266, 118631.	20.2	99
29	Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1154.	3.5	8
30	sReactivation of CeO 2 â€based Catalysts in the HCl Oxidation Reaction: In situ Quantification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 2020, 12, 5511-5522.	3.7	8
31	Elimination of NO pollutant in semi-enclosed spaces over sodium-promoted cobalt oxyhydroxide (CoOOH) by oxidation and adsorption mechanism. Applied Catalysis B: Environmental, 2020, 279, 119404.	20.2	15
32	The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene over Co3O4 Catalysts. Catalysts, 2020, 10, 867.	3.5	7
33	Identification of Active Area as Active Center for CO Oxidation over Single Au Atom Catalyst. ACS Catalysis, 2020, 10, 6094-6101.	11.2	106
34	Incorporating Lanthanum into Mesoporous Silica Foam Enhances Enzyme Immobilization and the Activity of Penicillin G Acylase Due to Lewis Acidâ€Base Interactions. ChemBioChem, 2020, 21, 2143-2148.	2.6	4
35	Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N,N-dimethylformamide. Catalysis Science and Technology, 2020, 10, 2473-2483.	4.1	21
36	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Damp; Technology, 2020, 54, 2530-2538.	10.0	75

#	Article	IF	Citations
37	Catalytic combustion of vinyl chloride over Sr doped LaMnO3. Catalysis Today, 2019, 327, 190-195.	4.4	32
38	Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Metals, 2019, 38, 107-114.	7.1	18
39	CeO ₂ Wetting Layer on ZrO ₂ Particle with Sharp Solid Interface as Highly Active and Stable Catalyst for HCl Oxidation Reaction. ACS Catalysis, 2019, 9, 10680-10693.	11.2	20
40	Insights into the Morphological Effect of Co3O4 Crystallite on Catalytic Oxidation of Vinyl Chloride. Catalysts, 2019, 9, 408.	3. 5	20
41	A Facile Way To Improve Pt Atom Efficiency for CO Oxidation at Low Temperature: Modification by Transition Metal Oxides. ACS Catalysis, 2019, 9, 6177-6187.	11.2	99
42	Ambient Temperature NO Adsorber Derived from Pyrolysis of Co-MOF(ZIF-67). ACS Omega, 2019, 4, 9542-9551.	3. 5	18
43	Mechanochemically Assisted Synthesis of Ruthenium Clusters Embedded in Mesoporous Carbon for an Efficient Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 2719-2725.	3.4	15
44	An efficient Sn Mn1-O composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Applied Catalysis B: Environmental, 2019, 255, 117748.	20.2	64
45	Ru/CeO ₂ Catalyst with Optimized CeO ₂ Support Morphology and Surface Facets for Propane Combustion. Environmental Science & Eachtology, 2019, 53, 5349-5358.	10.0	228
46	Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 2019, 9, 240.	3.5	13
47	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	12.8	168
48	Oxygen storage capacity <i>versus ⟨i⟩ catalytic activity of ceria–zirconia solid solutions in CO and HCl oxidation. Catalysis Science and Technology, 2019, 9, 2163-2172.</i>	4.1	37
49	Catalytic activity of Cu–SSZ-13 prepared with different methods for NH3-SCR reaction. Rare Metals, 2019, 38, 210-220.	7.1	30
50	Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy, 2019, 55, 441-446.	16.0	10
51	NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today, 2019, 320, 91-99.	4.4	90
52	The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO ₂ . Catalysis Science and Technology, 2018, 8, 2567-2577.	4.1	103
53	Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 2018, 358, 199-210.	6.2	80
54	Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups. Chinese Journal of Catalysis, 2018, 39, 47-53.	14.0	14

#	Article	IF	CITATIONS
55	Catalytic oxidation of hydrogen chloride to chlorine over Cu-K-Sm/l³-Al2O3 catalyst with excellent catalytic performance. Catalysis Today, 2018, 307, 286-292.	4.4	19
56	Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Applied Catalysis B: Environmental, 2018, 225, 110-120.	20.2	149
57	Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. Journal of Hazardous Materials, 2018, 342, 290-296.	12.4	23
58	Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 221, 652-663.	20.2	204
59	The stabilizing effect of water and high reaction temperatures on the CeO2-catalyst in the harsh HCl oxidation reaction. Journal of Catalysis, 2018, 357, 257-262.	6.2	18
60	Preparation of lamellar-stacked TS-1 and its catalytic performance for the ammoximation of butanone with H2O2. Journal of Materials Science, 2018, 53, 4034-4045.	3.7	14
61	Insight into the Superior Catalytic Activity of MnO ₂ for Low-Content NO Oxidation at Room Temperature. Journal of Physical Chemistry C, 2018, 122, 25365-25373.	3.1	22
62	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Environmental Scienc	10.0	165
63	Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion. Applied Catalysis B: Environmental, 2018, 239, 373-382.	20.2	76
64	Catalytic HCl oxidation reaction: Stabilizing effect of Zr-doping on CeO2 nano-rods. Applied Catalysis B: Environmental, 2018, 239, 628-635.	20.2	34
65	Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Applied Catalysis B: Environmental, 2017, 202, 706-714.	20.2	60
66	Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chemical Engineering Journal, 2017, 315, 392-402.	12.7	150
67	Gas-phase epoxidation of propylene by molecular oxygen over Ag-Cu-Cl/BaCO3 catalyst: Effects of Cu and Cl loadings. Chinese Journal of Catalysis, 2017, 38, 65-72.	14.0	14
68	Activity and stability of Co 3 O 4 -based catalysts for soot oxidation: The enhanced effect of Bi 2 O 3 on activation and transfer of oxygen. Applied Catalysis B: Environmental, 2017, 209, 33-44.	20.2	103
69	Synthesis of a hollow structured core–shell Au@CeO ₂ –ZrO ₂ nanocatalyst and its excellent catalytic performance. Journal of Materials Chemistry A, 2017, 5, 5601-5611.	10.3	29
70	Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components. Catalysis Science and Technology, 2017, 7, 2362-2370.	4.1	27
71	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	13.7	181
72	Deoxygenation of coal bed methane on LaCoO ₃ perovskite catalyst: the structure evolution and catalytic performance. RSC Advances, 2017, 7, 15211-15221.	3.6	15

#	Article	IF	CITATIONS
73	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	13.8	129
74	The existing states of potassium species in K-doped Co ₃ O ₄ catalysts and their influence on the activities for NO and soot oxidation. Catalysis Science and Technology, 2017, 7, 4710-4719.	4.1	52
75	Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: a molecular oxygen mechanism. Physical Chemistry Chemical Physics, 2017, 19, 25129-25139.	2.8	31
76	Preparation of LaMnO 3 for catalytic combustion of vinyl chloride. Chinese Journal of Catalysis, 2017, 38, 1406-1412.	14.0	23
77	Shape-Controlled CeO ₂ Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction. ACS Catalysis, 2017, 7, 6453-6463.	11.2	109
78	In situ assembly of ultrafine Mn ₃ O ₄ nanoparticles into MIL-101 for selective aerobic oxidation. Catalysis Science and Technology, 2017, 7, 4136-4144.	4.1	20
79	Catalytic oxidation of 1,2-dichloropropane over supported LaMnO oxides catalysts. Applied Catalysis B: Environmental, 2017, 201, 552-560.	20.2	81
80	Catalytic Performance of MgO-Supported Co Catalyst for the Liquid Phase Oxidation of Cyclohexane with Molecular Oxygen. Catalysts, 2017, 7, 155.	3. 5	27
81	Unexpected C–C Bond Cleavage Mechanism in Ethylene Combustion at Low Temperature: Origin and Implications. ACS Catalysis, 2016, 6, 5393-5398.	11.2	27
82	Catalytic performance of Co–Fe mixed oxide for NH ₃ -SCR reaction and the promotional role of cobalt. RSC Advances, 2016, 6, 66169-66179.	3.6	29
83	Gas-phase epoxidation of propylene by molecular oxygen over Ag/BaCO3 catalysts: Effect of preparation conditions. Catalysis Today, 2016, 276, 2-10.	4.4	22
84	Gas-phase epoxidation of propylene by molecular oxygen over Ag-CuCl 2 /BaCO 3 catalyst with low CuCl 2 doping: Catalytic performance, deactivation and regeneration. Journal of Molecular Catalysis A, 2016, 424, 65-76.	4.8	25
85	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	13.7	217
86	Surfactant-Mediated One-Pot Method To Prepare Pd–CeO ₂ Colloidal Assembled Spheres and Their Enhanced Catalytic Performance for CO Oxidation. ACS Omega, 2016, 1, 118-126.	3. 5	19
87	A highly-efficient La–MnO _x catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catalysis Science and Technology, 2016, 6, 8222-8233.	4.1	31
88	Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co ₃ O ₄ catalysts. RSC Advances, 2016, 6, 99577-99585.	3.6	35
89	A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. Journal of Molecular Catalysis A, 2016, 420, 272-281.	4.8	66
90	Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Applied Catalysis B: Environmental, 2016, 186, 173-183.	20.2	95

#	Article	IF	Citations
91	Effect of Ceria Crystal Plane on the Physicochemical and Catalytic Properties of Pd/Ceria for CO and Propane Oxidation. ACS Catalysis, 2016, 6, 2265-2279.	11.2	505
92	Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180, 29-37.	20.2	77
93	An efficient Cu-K-La/ \hat{I}^3 -Al2O3 catalyst for catalytic oxidation of hydrogen chloride to chlorine. Applied Catalysis B: Environmental, 2015, 164, 483-487.	20.2	17
94	Epoxidation of propylene by molecular oxygen over unsupported AgCu x bimetallic catalyst. Rare Metals, 2015, 34, 477-490.	7.1	28
95	A Highly Effective Catalyst of Sm-MnO _{<i>x</i>} for the NH ₃ -SCR of NO _{<i>x</i>} at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catalysis, 2015, 5, 5973-5983.	11.2	457
96	Aldehyde-functionalized mesostructured cellular foams prepared by copolymerization method for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2015, 202, 90-96.	4.4	21
97	LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Applied Catalysis B: Environmental, 2014, 148-149, 490-498.	20.2	211
98	Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 190, 17-25.	4.4	17
99	Aldehydepropyl-functionalized mesostructured cellular foams: Efficient supports for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 111-117.	1.8	5
100	Threeâ€Phase Catalytic System of H ₂ 0, lonic Liquid, and VOPO ₄ â€"SiO ₂ Solid Acid for Conversion of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2014, 7, 1703-1709.	6.8	28
101	Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Applied Catalysis B: Environmental, 2014, 146, 43-49.	20.2	146
102	Current status and perspectives of rare earth catalytic materials and catalysis. Chinese Journal of Catalysis, 2014, 35, 1238-1250.	14.0	120
103	Gas-phase hydrogenation of maleic anhydride to \hat{I}^3 -butyrolactone over Cu-CeO2-Al2O3 catalyst at atmospheric pressure: Effects of the residual sodium and water in the catalyst precursor. Journal of Molecular Catalysis A, 2014, 395, 392-397.	4.8	12
104	Synthesis and catalytic ammoxidation performance of hierarchical TS-1 prepared by steam-assisted dry gel conversion method: the effect of TPAOH amount. Journal of Materials Science, 2014, 49, 4341-4348.	3.7	16
105	Effect of KCl on the performance of Cu-K-La/l³-Al2O3 catalyst for HCl oxidation. Chinese Journal of Catalysis, 2014, 35, 1359-1363.	14.0	9
106	Effect of promoters on Cu–ZnO–SiO2 catalyst for gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure. Journal of Molecular Catalysis A, 2014, 392, 1-7.	4.8	11
107	Immobilization of penicillin G acylase on paramagnetic aldehyde-functionalized mesostructured cellular foams. Enzyme and Microbial Technology, 2014, 60, 32-39.	3.2	8
108	One-pot synthesis of aldehyde-functionalized mesoporous silica-Fe3O4 nanocomposites for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 197, 1-7.	4.4	11

#	Article	IF	Citations
109	An efficient and reusable "hairy―particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water. Chemical Communications, 2013, 49, 8668.	4.1	40
110	A renewable HSO3/H2PO3-grafted polyethylene fiber catalyst: an efficient heterogeneous catalyst for the synthesis of 5-hydroxymethylfurfural from fructose in water. RSC Advances, 2013, 3, 21242.	3.6	23
111	Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129, 509-516.	20.2	270
112	The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134-135, 310-315.	20.2	114
113	Heterostructured BaSO4–SiO2 mesoporous materials as new supports for gold nanoparticles in low-temperature CO oxidation. Chemical Communications, 2013, 49, 3464.	4.1	8
114	Highly Active and Stable Co ₃ O ₄ /ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method. ACS Catalysis, 2013, 3, 1154-1164.	11.2	338
115	Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. Journal of Catalysis, 2012, 296, 110-119.	6.2	179
116	In situ growth synthesis of heterostructured LnPO4–SiO2 (Ln = La, Ce, and Eu) mesoporous materials as supports for small gold particles used in catalytic CO oxidation. Journal of Materials Chemistry, 2012, 22, 25227.	6.7	18
117	Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Lowâ€Temperature CO Oxidation with Metals. Angewandte Chemie - International Edition, 2012, 51, 6657-6661.	13.8	119
118	Epoxidation of propylene by molecular oxygen over supported Ag–Cu bimetallic catalysts with low Ag loading. Journal of Molecular Catalysis A, 2012, 357, 106-111.	4.8	56
119	Immobilization of glucose isomerase onto GAMM support for isomerization of glucose to fructose. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 73-76.	1.8	28
120	Catalytic Methane Combustion over Co3O4/CeO2 Composite Oxides Prepared by Modified Citrate Solâ€"Gel Method. Catalysis Letters, 2011, 141, 452-458.	2.6	54
121	Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure over Cu–CeO2–Al2O3 catalyst. Journal of Molecular Catalysis A, 2011, 337, 77-81.	4.8	30
122	Role of chlorohydrocarbon in increasing selectivity of propylene oxide over Ag–Y2O3–K2O/α-Al2O3 catalyst for epoxidation of propylene by molecular oxygen. Journal of Molecular Catalysis A, 2011, 342-343, 30-34.	4.8	17
123	Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Applied Catalysis B: Environmental, 2011, 102, 475-483.	20.2	198
124	Superparamagnetic aminopropyl-functionalized silica core-shell microspheres as magnetically separable carriers for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 50-56.	1.8	30
125	Synthesis of lathanum or La-B doped KIT-6 mesoporous materials and their application in the catalytic oxidation of styrene. Journal of Rare Earths, 2010, 28, 369-375.	4.8	19
126	Aminopropyl-functionalized silicas synthesized by W/O microemulsion for immobilization of penicillin G acylase. Catalysis Today, 2009, 148, 184-188.	4.4	30

#	Article	IF	CITATION
127	Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. Journal of Physical Chemistry C, 2009, 113, 7181-7185.	3.1	28
128	Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. Journal of Rare Earths, 2008, 26, 515-522.	4.8	41
129	Immobilized penicillin G acylase on mesoporous silica: The influence of pore size, pore volume and mesophases. Microporous and Mesoporous Materials, 2008, 114, 507-510.	4.4	49
130	Synthesis of Lanthanum-Doped MCM-48 Molecular Sieves and Its Catalytic Performance for the Oxidation of Styrene. Journal of Physical Chemistry B, 2007, 111, 12103-12110.	2.6	74
131	Promotional effect of Y2O3 on the performance of Ag/ \hat{l} ±-Al2O3 catalyst for epoxidation of propylene with molecular oxygen. Journal of Molecular Catalysis A, 2007, 276, 162-167.	4.8	27
132	Effect of preparation condition on performance of Ag–MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen. Journal of Molecular Catalysis A, 2005, 232, 165-172.	4.8	43
133	A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2004, 30, 75-81.	1.8	56
134	Direct epoxidation of propylene with molecular oxygen over Ag–MoO3/ZrO2 catalyst. Catalysis Today, 2004, 93-95, 173-182.	4.4	47