
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Ceria Crystal Plane on the Physicochemical and Catalytic Properties of Pd/Ceria for CO and Propane Oxidation. ACS Catalysis, 2016, 6, 2265-2279.	11.2	505
2	A Highly Effective Catalyst of Sm-MnO _{<i>x</i>} for the NH ₃ -SCR of NO _{<i>x</i>} at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catalysis, 2015, 5, 5973-5983.	11.2	457
3	Highly Active and Stable Co ₃ O ₄ /ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method. ACS Catalysis, 2013, 3, 1154-1164.	11.2	338
4	Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129, 509-516.	20.2	270
5	Ru/CeO ₂ Catalyst with Optimized CeO ₂ Support Morphology and Surface Facets for Propane Combustion. Environmental Science & Technology, 2019, 53, 5349-5358.	10.0	228
6	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	13.7	217
7	LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Applied Catalysis B: Environmental, 2014, 148-149, 490-498.	20.2	211
8	Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 221, 652-663.	20.2	204
9	Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Applied Catalysis B: Environmental, 2011, 102, 475-483.	20.2	198
10	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	13.7	181
11	Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. Journal of Catalysis, 2012, 296, 110-119.	6.2	179
12	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	12.8	168
13	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Technology, 2018, 52, 9531-9541.	10.0	165
14	Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chemical Engineering Journal, 2017, 315, 392-402.	12.7	150
15	Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Applied Catalysis B: Environmental, 2018, 225, 110-120.	20.2	149
16	Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Applied Catalysis B: Environmental, 2014, 146, 43-49.	20.2	146
17	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	13.8	129
18	Current status and perspectives of rare earth catalytic materials and catalysis. Chinese Journal of Catalysis, 2014, 35, 1238-1250.	14.0	120

#	Article	IF	CITATIONS
19	Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Lowâ€Temperature CO Oxidation with Metals. Angewandte Chemie - International Edition, 2012, 51, 6657-6661.	13.8	119
20	The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134-135, 310-315.	20.2	114
21	Shape-Controlled CeO ₂ Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction. ACS Catalysis, 2017, 7, 6453-6463.	11.2	109
22	Identification of Active Area as Active Center for CO Oxidation over Single Au Atom Catalyst. ACS Catalysis, 2020, 10, 6094-6101.	11.2	106
23	Activity and stability of Co 3 O 4 -based catalysts for soot oxidation: The enhanced effect of Bi 2 O 3 on activation and transfer of oxygen. Applied Catalysis B: Environmental, 2017, 209, 33-44.	20.2	103
24	The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO ₂ . Catalysis Science and Technology, 2018, 8, 2567-2577.	4.1	103
25	A Facile Way To Improve Pt Atom Efficiency for CO Oxidation at Low Temperature: Modification by Transition Metal Oxides. ACS Catalysis, 2019, 9, 6177-6187.	11.2	99
26	Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Applied Catalysis B: Environmental, 2020, 266, 118631.	20.2	99
27	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i>_x</i> Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Technology, 2021, 55, 10734-10743.	10.0	97
28	Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Applied Catalysis B: Environmental, 2016, 186, 173-183.	20.2	95
29	NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental, 2021, 291, 120074.	20.2	93
30	NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today, 2019, 320, 91-99.	4.4	90
31	Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity. Applied Catalysis B: Environmental, 2021, 282, 119577.	20.2	85
32	Catalytic oxidation of 1,2-dichloropropane over supported LaMnO oxides catalysts. Applied Catalysis B: Environmental, 2017, 201, 552-560.	20.2	81
33	Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 2018, 358, 199-210.	6.2	80
34	Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant. Applied Catalysis B: Environmental, 2021, 298, 120606.	20.2	78
35	Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180, 29-37.	20.2	77
36	Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion. Applied Catalysis B: Environmental, 2018, 239, 373-382.	20.2	76

#	Article	IF	CITATIONS
37	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	10.0	75
38	Synthesis of Lanthanum-Doped MCM-48 Molecular Sieves and Its Catalytic Performance for the Oxidation of Styrene. Journal of Physical Chemistry B, 2007, 111, 12103-12110.	2.6	74
39	A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. Journal of Molecular Catalysis A, 2016, 420, 272-281.	4.8	66
40	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Technology, 2022, 56, 9661-9671.	10.0	65
41	An efficient Sn Mn1-O composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Applied Catalysis B: Environmental, 2019, 255, 117748.	20.2	64
42	Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Applied Catalysis B: Environmental, 2017, 202, 706-714.	20.2	60
43	A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2004, 30, 75-81.	1.8	56
44	Epoxidation of propylene by molecular oxygen over supported Ag–Cu bimetallic catalysts with low Ag loading. Journal of Molecular Catalysis A, 2012, 357, 106-111.	4.8	56
45	Catalytic Methane Combustion over Co3O4/CeO2 Composite Oxides Prepared by Modified Citrate Sol–Gel Method. Catalysis Letters, 2011, 141, 452-458.	2.6	54
46	The existing states of potassium species in K-doped Co ₃ O ₄ catalysts and their influence on the activities for NO and soot oxidation. Catalysis Science and Technology, 2017, 7, 4710-4719.	4.1	52
47	Immobilized penicillin G acylase on mesoporous silica: The influence of pore size, pore volume and mesophases. Microporous and Mesoporous Materials, 2008, 114, 507-510.	4.4	49
48	Direct epoxidation of propylene with molecular oxygen over Ag–MoO3/ZrO2 catalyst. Catalysis Today, 2004, 93-95, 173-182.	4.4	47
49	Effect of preparation condition on performance of Ag–MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen. Journal of Molecular Catalysis A, 2005, 232, 165-172.	4.8	43
50	Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: An experimental and DFT study. Journal of Hazardous Materials, 2021, 402, 123473.	12.4	42
51	Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. Journal of Rare Earths, 2008, 26, 515-522.	4.8	41
52	An efficient and reusable "hairy―particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water. Chemical Communications, 2013, 49, 8668.	4.1	40
53	Oxygen storage capacity <i>versus</i> catalytic activity of ceria–zirconia solid solutions in CO and HCl oxidation. Catalysis Science and Technology, 2019, 9, 2163-2172.	4.1	37
54	Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion. Chemical Engineering Journal, 2021, 416, 129150.	12.7	36

#	Article	IF	CITATIONS
55	Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co ₃ O ₄ catalysts. RSC Advances, 2016, 6, 99577-99585.	3.6	35
56	Catalytic HCl oxidation reaction: Stabilizing effect of Zr-doping on CeO2 nano-rods. Applied Catalysis B: Environmental, 2018, 239, 628-635.	20.2	34
57	Catalytic combustion of vinyl chloride over Sr doped LaMnO3. Catalysis Today, 2019, 327, 190-195.	4.4	32
58	A highly-efficient La–MnO _x catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catalysis Science and Technology, 2016, 6, 8222-8233.	4.1	31
59	Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: a molecular oxygen mechanism. Physical Chemistry Chemical Physics, 2017, 19, 25129-25139.	2.8	31
60	Aminopropyl-functionalized silicas synthesized by W/O microemulsion for immobilization of penicillin G acylase. Catalysis Today, 2009, 148, 184-188.	4.4	30
61	Superparamagnetic aminopropyl-functionalized silica core-shell microspheres as magnetically separable carriers for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 50-56.	1.8	30
62	Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure over Cu–CeO2–Al2O3 catalyst. Journal of Molecular Catalysis A, 2011, 337, 77-81.	4.8	30
63	Catalytic activity of Cu–SSZ-13 prepared with different methods for NH3-SCR reaction. Rare Metals, 2019, 38, 210-220.	7.1	30
64	Catalytic performance of Co–Fe mixed oxide for NH ₃ -SCR reaction and the promotional role of cobalt. RSC Advances, 2016, 6, 66169-66179.	3.6	29
65	Synthesis of a hollow structured core–shell Au@CeO ₂ –ZrO ₂ nanocatalyst and its excellent catalytic performance. Journal of Materials Chemistry A, 2017, 5, 5601-5611.	10.3	29
66	Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. Journal of Physical Chemistry C, 2009, 113, 7181-7185.	3.1	28
67	Immobilization of glucose isomerase onto GAMM support for isomerization of glucose to fructose. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 73-76.	1.8	28
68	Threeâ€Phase Catalytic System of H ₂ 0, Ionic Liquid, and VOPO ₄ –SiO ₂ Solid Acid for Conversion of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2014, 7, 1703-1709.	6.8	28
69	Epoxidation of propylene by molecular oxygen over unsupported AgCu x bimetallic catalyst. Rare Metals, 2015, 34, 477-490.	7.1	28
70	Catalytic combustion of CVOCs over MoOx/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 310, 121240.	20.2	28
71	Promotional effect of Y2O3 on the performance of Ag/α-Al2O3 catalyst for epoxidation of propylene with molecular oxygen. Journal of Molecular Catalysis A, 2007, 276, 162-167.	4.8	27
72	Unexpected C–C Bond Cleavage Mechanism in Ethylene Combustion at Low Temperature: Origin and Implications. ACS Catalysis, 2016, 6, 5393-5398.	11.2	27

#	Article	IF	CITATIONS
73	Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components. Catalysis Science and Technology, 2017, 7, 2362-2370.	4.1	27
74	Catalytic Performance of MgO-Supported Co Catalyst for the Liquid Phase Oxidation of Cyclohexane with Molecular Oxygen. Catalysts, 2017, 7, 155.	3.5	27
75	Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Applied Surface Science, 2021, 556, 149766.	6.1	26
76	Gas-phase epoxidation of propylene by molecular oxygen over Ag-CuCl 2 /BaCO 3 catalyst with low CuCl 2 doping: Catalytic performance, deactivation and regeneration. Journal of Molecular Catalysis A, 2016, 424, 65-76.	4.8	25
77	A renewable HSO3/H2PO3-grafted polyethylene fiber catalyst: an efficient heterogeneous catalyst for the synthesis of 5-hydroxymethylfurfural from fructose in water. RSC Advances, 2013, 3, 21242.	3.6	23
78	Preparation of LaMnO 3 for catalytic combustion of vinyl chloride. Chinese Journal of Catalysis, 2017, 38, 1406-1412.	14.0	23
79	Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. Journal of Hazardous Materials, 2018, 342, 290-296.	12.4	23
80	Gas-phase epoxidation of propylene by molecular oxygen over Ag/BaCO3 catalysts: Effect of preparation conditions. Catalysis Today, 2016, 276, 2-10.	4.4	22
81	Insight into the Superior Catalytic Activity of MnO ₂ for Low-Content NO Oxidation at Room Temperature. Journal of Physical Chemistry C, 2018, 122, 25365-25373.	3.1	22
82	Aldehyde-functionalized mesostructured cellular foams prepared by copolymerization method for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2015, 202, 90-96.	4.4	21
83	Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N,N-dimethylformamide. Catalysis Science and Technology, 2020, 10, 2473-2483.	4.1	21
84	Oxy-Anionic Doping: A New Strategy for Improving Selectivity of Ru/CeO ₂ with Synergetic Versatility and Thermal Stability for Catalytic Oxidation of Chlorinated Volatile Organic Compounds. Environmental Science & Technology, 2022, 56, 8854-8863.	10.0	21
85	In situ assembly of ultrafine Mn ₃ O ₄ nanoparticles into MIL-101 for selective aerobic oxidation. Catalysis Science and Technology, 2017, 7, 4136-4144.	4.1	20
86	CeO ₂ Wetting Layer on ZrO ₂ Particle with Sharp Solid Interface as Highly Active and Stable Catalyst for HCl Oxidation Reaction. ACS Catalysis, 2019, 9, 10680-10693.	11.2	20
87	Insights into the Morphological Effect of Co3O4 Crystallite on Catalytic Oxidation of Vinyl Chloride. Catalysts, 2019, 9, 408.	3.5	20
88	Synthesis of lathanum or La-B doped KIT-6 mesoporous materials and their application in the catalytic oxidation of styrene. Journal of Rare Earths, 2010, 28, 369-375.	4.8	19
89	Surfactant-Mediated One-Pot Method To Prepare Pd–CeO ₂ Colloidal Assembled Spheres and Their Enhanced Catalytic Performance for CO Oxidation. ACS Omega, 2016, 1, 118-126.	3.5	19
90	Catalytic oxidation of hydrogen chloride to chlorine over Cu-K-Sm/γ-Al2O3 catalyst with excellent catalytic performance. Catalysis Today, 2018, 307, 286-292.	4.4	19

#	Article	IF	CITATIONS
91	In situ growth synthesis of heterostructured LnPO4–SiO2 (Ln = La, Ce, and Eu) mesoporous materials as supports for small gold particles used in catalytic CO oxidation. Journal of Materials Chemistry, 2012, 22, 25227.	6.7	18
92	The stabilizing effect of water and high reaction temperatures on the CeO2-catalyst in the harsh HCl oxidation reaction. Journal of Catalysis, 2018, 357, 257-262.	6.2	18
93	Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Metals, 2019, 38, 107-114.	7.1	18
94	Ambient Temperature NO Adsorber Derived from Pyrolysis of Co-MOF(ZIF-67). ACS Omega, 2019, 4, 9542-9551.	3.5	18
95	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Interfaces, 2021, 13, 58605-58618.	8.0	18
96	Role of chlorohydrocarbon in increasing selectivity of propylene oxide over Ag–Y2O3–K2O/α-Al2O3 catalyst for epoxidation of propylene by molecular oxygen. Journal of Molecular Catalysis A, 2011, 342-343, 30-34.	4.8	17
97	Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 190, 17-25.	4.4	17
98	An efficient Cu-K-La/γ-Al2O3 catalyst for catalytic oxidation of hydrogen chloride to chlorine. Applied Catalysis B: Environmental, 2015, 164, 483-487.	20.2	17
99	Synthesis and catalytic ammoxidation performance of hierarchical TS-1 prepared by steam-assisted dry gel conversion method: the effect of TPAOH amount. Journal of Materials Science, 2014, 49, 4341-4348.	3.7	16
100	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	4.1	16
101	Deoxygenation of coal bed methane on LaCoO ₃ perovskite catalyst: the structure evolution and catalytic performance. RSC Advances, 2017, 7, 15211-15221.	3.6	15
102	Mechanochemically Assisted Synthesis of Ruthenium Clusters Embedded in Mesoporous Carbon for an Efficient Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 2719-2725.	3.4	15
103	Elimination of NO pollutant in semi-enclosed spaces over sodium-promoted cobalt oxyhydroxide (CoOOH) by oxidation and adsorption mechanism. Applied Catalysis B: Environmental, 2020, 279, 119404.	20.2	15
104	Catalytic combustion of vinyl chloride emissions over Co3O4 catalysts with different crystallite sizes. Rare Metals, 2021, 40, 817-827.	7.1	15
105	Gas-phase epoxidation of propylene by molecular oxygen over Ag-Cu-Cl/BaCO3 catalyst: Effects of Cu and Cl loadings. Chinese Journal of Catalysis, 2017, 38, 65-72.	14.0	14
106	Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups. Chinese Journal of Catalysis, 2018, 39, 47-53.	14.0	14
107	Preparation of lamellar-stacked TS-1 and its catalytic performance for the ammoximation of butanone with H2O2. Journal of Materials Science, 2018, 53, 4034-4045.	3.7	14
108	Spinel Co3O4 oxides-support synergistic effect on catalytic oxidation of toluene. Applied Catalysis A: General, 2021, 614, 118044.	4.3	14

#	Article	IF	CITATIONS
109	Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Applied Catalysis A: General, 2021, 628, 118398.	4.3	14
110	Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. Journal of Rare Earths, 2023, 41, 523-530.	4.8	14
111	Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 2019, 9, 240.	3.5	13
112	Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Industrial & amp; Engineering Chemistry Research, 2021, 60, 7132-7144.	3.7	13
113	Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone over Cu-CeO2-Al2O3 catalyst at atmospheric pressure: Effects of the residual sodium and water in the catalyst precursor. Journal of Molecular Catalysis A, 2014, 395, 392-397.	4.8	12
114	Robust nanosheet-assembled Al ₂ O ₃ -supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. New Journal of Chemistry, 2021, 45, 21750-21762.	2.8	12
115	Effect of promoters on Cu–ZnO–SiO2 catalyst for gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure. Journal of Molecular Catalysis A, 2014, 392, 1-7.	4.8	11
116	One-pot synthesis of aldehyde-functionalized mesoporous silica-Fe3O4 nanocomposites for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 197, 1-7.	4.4	11
117	Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy, 2019, 55, 441-446.	16.0	10
118	Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts. Rare Metals, 2021, 40, 1056-1066.	7.1	10
119	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	4.8	10
120	Effect of KCl on the performance of Cu-K-La/γ-Al2O3 catalyst for HCl oxidation. Chinese Journal of Catalysis, 2014, 35, 1359-1363.	14.0	9
121	Heterostructured BaSO4–SiO2 mesoporous materials as new supports for gold nanoparticles in low-temperature CO oxidation. Chemical Communications, 2013, 49, 3464.	4.1	8
122	Immobilization of penicillin G acylase on paramagnetic aldehyde-functionalized mesostructured cellular foams. Enzyme and Microbial Technology, 2014, 60, 32-39.	3.2	8
123	Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1154.	3.5	8
124	sReactivation of CeO 2 â€based Catalysts in the HCl Oxidation Reaction: In situ Quantification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 2020, 12, 5511-5522.	3.7	8
125	The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene over Co3O4 Catalysts. Catalysts, 2020, 10, 867.	3.5	7
126	Nickel oxide regulating surface oxygen to promote formaldehyde oxidation on manganese oxide catalysts. Catalysis Science and Technology, 2021, 11, 7110-7124.	4.1	7

#	Article	IF	CITATIONS
127	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	7.1	7
128	Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion. Journal of Rare Earths, 2022, 40, 1462-1470.	4.8	6
129	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	5.0	6
130	Aldehydepropyl-functionalized mesostructured cellular foams: Efficient supports for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 111-117.	1.8	5
131	Incorporating Lanthanum into Mesoporous Silica Foam Enhances Enzyme Immobilization and the Activity of Penicillin G Acylase Due to Lewis Acidâ€Base Interactions. ChemBioChem, 2020, 21, 2143-2148.	2.6	4
132	Insight into the Surface-Tuned Activity and Cl ₂ /HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co ₃ O ₄ (110) versus (001): A DFT Study. Journal of Physical Chemistry C, 2021, 125, 16975-16983.	3.1	4
133	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	3.5	4
134	A new strategy to improve catalytic activity for chlorinated volatile organic compounds oxidation over cobalt oxide: Introduction of strontium carbonate. Journal of the Indian Chemical Society, 2021, 98, 100116.	2.8	3