Antonia Susca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191571/publications.pdf

Version: 2024-02-01

136950 114465 4,176 67 32 63 citations h-index g-index papers 67 67 67 4804 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phylogeny, identification and nomenclature of the genus <i>Aspergillus</i> . Studies in Mycology, 2014, 78, 141-173.	7.2	835
2	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
3	Biodiversity of Aspergillus species in some important agricultural products. Studies in Mycology, 2007, 59, 53-66.	7.2	249
4	Ochratoxin A Production and Amplified Fragment Length Polymorphism Analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger Strains Isolated from Grapes in Italy. Applied and Environmental Microbiology, 2006, 72, 680-685.	3.1	169
5	A Species-Specific PCR Assay Based on the Calmodulin Partial Gene for Identification of Fusarium Verticillioides, F. Proliferatum and F. Subglutinans. European Journal of Plant Pathology, 2004, 110, 495-502.	1.7	165
6	Fungal Planet description sheets: 785– 867. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2018, 41, 238-417.	4.4	163
7	Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of <i><scp>F</scp>usarium</i> . Molecular Microbiology, 2013, 90, 290-306.	2.5	118
8	Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1925-1932.	1.7	114
9	Specific detection of the toxigenic speciesFusarium proliferatumandF. oxysporumfrom asparagus plants using primers based on calmodulin gene sequences. FEMS Microbiology Letters, 2004, 230, 235-240.	1.8	96
10	JEM Spotlight: Fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. Journal of Environmental Monitoring, 2009, 11, 1849.	2.1	96
11	Mycotoxins: An Underhand Food Problem. Methods in Molecular Biology, 2017, 1542, 3-12.	0.9	83
12	Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1032-1039.	1.7	82
13	Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins. Frontiers in Microbiology, 2016, 7, 1412.	3.5	76
14	Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. European Journal of Plant Pathology, 2016, 146, 963-976.	1.7	76
15	3p Microsatellite Alterations in Exhaled Breath Condensate from Patients with Non–Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 738-744.	5.6	75
16	Development of a quantitative real-time PCR assay for the detection of Aspergillus carbonarius in grapes. International Journal of Food Microbiology, 2006, 111, S28-S34.	4.7	71
17	Penicillium Species and Their Associated Mycotoxins. Methods in Molecular Biology, 2017, 1542, 107-119.	0.9	70
18	Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics, 2019, 20, 314.	2.8	68

#	Article	IF	Citations
19	Correlation of Mycotoxin Fumonisin B ₂ Production and Presence of the Fumonisin Biosynthetic Gene <i>fum8</i> in Aspergillus niger from Grape. Journal of Agricultural and Food Chemistry, 2010, 58, 9266-9272.	5.2	59
20	Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genetics and Biology, 2014, 73, 39-52.	2.1	55
21	A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. International Journal of Food Microbiology, 2016, 234, 24-35.	4.7	55
22	Penicillium salamii, a new species occurring during seasoning of dry-cured meat. International Journal of Food Microbiology, 2015, 193, 91-98.	4.7	51
23	Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 2013, 167, 57-66.	4.7	49
24	PCR Assay for Identification of Aspergillus Carbonarius and Aspergillus Japonicus. European Journal of Plant Pathology, 2004, 110, 641-649.	1.7	47
25	AFLP characterization of Southern Europe population of Aspergillus Section Nigri from grapes. International Journal of Food Microbiology, 2006, 111, S22-S27.	4.7	45
26	Polymerase chain reaction (PCR) identification of <i>Aspergillus niger</i> and <i>Aspergillus tubingensis</i> based on the calmodulin gene. Food Additives and Contaminants, 2007, 24, 1154-1160.	2.0	44
27	Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina. International Journal of Food Microbiology, 2015, 201, 35-41.	4.7	44
28	Toxin Profile, Fertility and AFLP Analysis of Fusarium verticillioides from Banana Fruits. European Journal of Plant Pathology, 2004, 110, 601-609.	1.7	42
29	Fungal mycobiota and mycotoxin risk for traditional artisan Italian cave cheese. Food Microbiology, 2019, 78, 62-72.	4.2	40
30	Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fungal Biology, 2012, 116, 241-248.	2.5	38
31	Phylogenetic characterization and ochratoxin A – Fumonisin profile of black Aspergillus isolated from grapes in Argentina. International Journal of Food Microbiology, 2011, 149, 171-176.	4.7	36
32	Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B production in Fusarium verticillioides. European Journal of Plant Pathology, 2012, 134, 685-695.	1.7	33
33	Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives. Frontiers in Microbiology, 2017, 8, 1356.	3.5	33
34	Molecular Identification and Mycotoxin Production by Alternaria Species Occurring on Durum Wheat, Showing Black Point Symptoms. Toxins, 2020, 12, 275.	3.4	32
35	Phylogeny and Mycotoxin Characterization of Alternaria Species Isolated from Wheat Grown in Tuscany, Italy. Toxins, 2018, 10, 472.	3.4	29
36	Penicillium species: crossroad between quality and safety of cured meat production. Current Opinion in Food Science, 2017, 17, 36-40.	8.0	28

#	Article	IF	CITATIONS
37	Identification, mycotoxin risk and pathogenicity of <i>Fusarium </i> species associated with fig endosepsis in Apulia, Italy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 718-728.	2.3	27
38	Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy. International Journal of Food Microbiology, 2014, 188, 75-82.	4.7	25
39	Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products. International Journal of Food Microbiology, 2015, 202, 42-47.	4.7	25
40	Effect of Penicillium nordicum contamination rates on ochratoxin A accumulation in dry-cured salami. Food Control, 2016, 67, 235-239.	5.5	21
41	Analysis of the fungal microbiome in exhaled breath condensate of patients with asthma. Allergy and Asthma Proceedings, 2016, 37, 41-46.	2.2	21
42	Aspergillus spp. colonization in exhaled breath condensate of lung cancer patients from Puglia Region of Italy. BMC Pulmonary Medicine, 2014, 14, 22.	2.0	19
43	Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. International Journal of Food Microbiology, 2018, 282, 66-70.	4.7	18
44	<i>Aspergillus</i> section <i>Nigri</i> as contributor of fumonisin B ₂ contamination in maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 149-155.	2.3	17
45	Rapid polymerase chain reaction (PCR)-single-stranded conformational polymorphism (SSCP) screening method for the identification of AspergillussectionNigrispecies by the detection of calmodulin nucleotide variations. Food Additives and Contaminants, 2007, 24, 1148-1153.	2.0	16
46	Mycotoxin Profile and Phylogeny of Pathogenic Alternaria Species Isolated from Symptomatic Tomato Plants in Lebanon. Toxins, 2021, 13, 513.	3.4	15
47	Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species <i>Fusarium subglutinans</i> and <i>Fusarium temperatum</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	14
48	Fusarium fujikuroi species complex in Brazilian rice: Unveiling increased phylogenetic diversity and toxigenic potential. International Journal of Food Microbiology, 2020, 330, 108667.	4.7	14
49	Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia. Toxins, 2021, 13, 463.	3.4	14
50	Study of gene expression and OTA production by Penicillium nordicum during a small-scale seasoning process of salami. International Journal of Food Microbiology, 2016, 227, 51-55.	4.7	13
51	Phylogenetic, toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt. Mycological Progress, 2018, 17, 1269-1282.	1.4	13
52	Gain and loss of a transcription factor that regulates late trichothecene biosynthetic pathway genes in Fusarium. Fungal Genetics and Biology, 2020, 136, 103317.	2.1	13
53	A loop-mediated isothermal amplification (LAMP) assay for rapid detection of fumonisin producing Aspergillus species. Food Microbiology, 2020, 90, 103469.	4.2	13
54	Fumonisin B2 by Aspergillus niger in the grape–wine chain: an additional potential mycotoxicological risk. Annals of Microbiology, 2011, 61, 1-3.	2.6	12

#	Article	IF	CITATIONS
55	Multilocus sequence analysis of Aspergillus Sect. Nigri in dried vine fruits of worldwide origin. International Journal of Food Microbiology, 2013, 165, 163-168.	4.7	12
56	A survey of fungal microbiota in airways of healthy volunteer subjects from Puglia (Apulia), Italy. BMC Infectious Diseases, 2019, 19, 78.	2.9	12
57	Detection of Aspergillus carbonarius and other black aspergilli from grapes by DNA OLISAâ,,¢ microarray. Food Additives and Contaminants, 2007, 24, 1138-1147.	2.0	10
58	Corrigendum to "Specific detection of the toxigenic species Fusarium proliferatum and F. oxysporum from asparagus plants using primers based on calmodulin gene sequences―[FEMS Lett. 230 (2004) 235–240]. FEMS Microbiology Letters, 2004, 232, 229.	1.8	8
59	Identification of toxigenic fungal species associated with maize ear rot: Calmodulin as single informative gene. International Journal of Food Microbiology, 2020, 319, 108491.	4.7	8
60	Pathogenicity of Fumonisin-producing and Nonproducing Strains of <i>Aspergillus</i> Species in Section <i>Nigri</i> to Maize Ears and Seedlings. Plant Disease, 2018, 102, 282-291.	1.4	7
61	Isolation, Molecular Identification, and Mycotoxin Production of Aspergillus Species Isolated from the Rhizosphere of Sugarcane in the South of Iran. Toxins, 2020, 12, 122.	3.4	6
62	Characterisation of fungal pathogens associated with stem-end rot of avocado fruit in Italy. Acta Horticulturae, 2016, , 133-140.	0.2	4
63	Patulin risk associated with blue mould of pome fruit marketed in southern Italy. Quality Assurance and Safety of Crops and Foods, 2017, 9, 23-29.	3.4	4
64	Phylogeny and mycotoxin profile of Fusarium species isolated from sugarcane in Southern Iran. Microbiological Research, 2021, 252, 126855.	5.3	4
65	A PCR method to identify ochratoxin A-producing Aspergillus westerdijkiae strains on dried and aged foods. International Journal of Food Microbiology, 2021, 344, 109113.	4.7	3
66	Occurrence and Characterization of Penicillium Species Isolated from Post-Harvest Apples in Lebanon. Toxins, 2021, 13, 730.	3.4	3
67	Mycotoxin Biosynthetic Pathways: A Window on the Evolutionary Relationships Among Toxigenic Fungi., 2017,, 135-148.		2