## Rui Gao

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191314/publications.pdf Version: 2024-02-01



DUI CAO

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Electroprecipitation of Nanometer-Thick Films of Ln(OH) <sub>3</sub> [Ln = La, Ce, and Lu] at Pt<br>Microelectrodes and Their Effect on Electron-Transfer Reactions. Langmuir, 2022, 38, 8125-8134.                                     | 3.5  | 4         |
| 2  | A highly selective ATP-responsive biomimetic nanochannel based on smart copolymer. Analytica<br>Chimica Acta, 2021, 1188, 339167.                                                                                                       | 5.4  | 4         |
| 3  | Direct Observation of Single Biomolecule Hidden Behaviors by an Electro-Optical Nanopore.<br>Biophysical Journal, 2020, 118, 159a.                                                                                                      | 0.5  | 0         |
| 4  | Electrochemical Generation of Individual Nanobubbles Comprising H <sub>2</sub> , D <sub>2</sub> ,<br>and HD. Langmuir, 2020, 36, 6073-6078.                                                                                             | 3.5  | 11        |
| 5  | Shot noise sets the limit of quantification in electrochemical measurements. Current Opinion in Electrochemistry, 2020, 22, 170-177.                                                                                                    | 4.8  | 26        |
| 6  | Electrochemical Reduction of [Ni(Mebpy) <sub>3</sub> ] <sup>2+</sup> : Elucidation of the Redox<br>Mechanism by Cyclic Voltammetry and Steady‧tate Voltammetry in Low Ionic Strength Solutions.<br>ChemElectroChem, 2020, 7, 1473-1479. | 3.4  | 11        |
| 7  | Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.                                                                                                                              | 8.2  | 38        |
| 8  | Visualization of Hydrogen Evolution at Individual Platinum Nanoparticles at a Buried Interface.<br>Journal of the American Chemical Society, 2020, 142, 8890-8896.                                                                      | 13.7 | 40        |
| 9  | Detektieren mit Nanopipetten im eingeschrÄ <b>¤</b> kten Raum: von einzelnen Molekülen über Nanopartikel<br>hin zu der Zelle. Angewandte Chemie, 2019, 131, 3744-3752.                                                                  | 2.0  | 21        |
| 10 | Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells.<br>Angewandte Chemie - International Edition, 2019, 58, 3706-3714.                                                                          | 13.8 | 185       |
| 11 | Nanopore-based sensing interface for single molecule electrochemistry. Science China Chemistry, 2019, 62, 1576-1587.                                                                                                                    | 8.2  | 8         |
| 12 | Wireless nanopore electrodes for analysis of single entities. Nature Protocols, 2019, 14, 2015-2035.                                                                                                                                    | 12.0 | 48        |
| 13 | Wireless Nanopore Electrode for Electron Transfer Imaging in Live Cells. Biophysical Journal, 2019, 116, 315a.                                                                                                                          | 0.5  | 0         |
| 14 | A Closed-Type Wireless Nanopore Electrode for Analyzing Single Nanoparticles. Journal of Visualized<br>Experiments, 2019, , .                                                                                                           | 0.3  | 5         |
| 15 | Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids. Journal of the American Chemical Society, 2019, 141, 20187-20197.                                                              | 13.7 | 175       |
| 16 | Singleâ€Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological<br>Interactions. Chemistry - A European Journal, 2018, 24, 13064-13071.                                                                       | 3.3  | 23        |
| 17 | Electrochemical Confinement Effects for Innovating New Nanopore Sensing Mechanisms. Small Methods, 2018, 2, 1700390.                                                                                                                    | 8.6  | 49        |
| 18 | Dynamics of Single-Enzyme Activity in a Nanopore Confinement. Biophysical Journal, 2018, 114, 688a.                                                                                                                                     | 0.5  | 1         |

Rui Gao

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.<br>Journal of the American Chemical Society, 2018, 140, 5385-5392.                                   | 13.7 | 209       |
| 20 | A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single<br>Nanoparticle Collisions. Angewandte Chemie, 2018, 130, 1023-1027.                        | 2.0  | 11        |
| 21 | Processes at nanoelectrodes: general discussion. Faraday Discussions, 2018, 210, 235-265.                                                                                                           | 3.2  | 1         |
| 22 | Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.                                                                                                            | 3.2  | 4         |
| 23 | Characterization of the Dynamic Growth of the Nanobubble within the Confined Glass Nanopore.<br>Analytical Chemistry, 2018, 90, 12352-12355.                                                        | 6.5  | 26        |
| 24 | Frontispiece: Singleâ€Molecule Sensing with Nanopore Confinement: From Chemical Reactions to<br>Biological Interactions. Chemistry - A European Journal, 2018, 24, .                                | 3.3  | 0         |
| 25 | Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore. Nature Communications, 2018, 9, 3657.                                                      | 12.8 | 49        |
| 26 | Dynamics of a Molecular Plug Docked onto a Solid-State Nanopore. Journal of Physical Chemistry<br>Letters, 2018, 9, 4686-4694.                                                                      | 4.6  | 31        |
| 27 | A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single<br>Nanoparticle Collisions. Angewandte Chemie - International Edition, 2018, 57, 1011-1015. | 13.8 | 82        |
| 28 | Characterization of DNA duplex unzipping through a sub-2 nm solid-state nanopore. Chemical<br>Communications, 2017, 53, 3539-3542.                                                                  | 4.1  | 41        |
| 29 | Direct Observation of Single Biopolymer Folding and Unfolding Process by Solid-State Nanopore.<br>Biophysical Journal, 2017, 112, 70a.                                                              | 0.5  | 1         |
| 30 | Dynamic Selfâ€Assembly of Homogenous Microcyclic Structures Controlled by a Silver oated<br>Nanopore. Small, 2017, 13, 1700234.                                                                     | 10.0 | 30        |
| 31 | Selfâ€Assembly: Dynamic Selfâ€Assembly of Homogenous Microcyclic Structures Controlled by a<br>Silver oated Nanopore (Small 25/2017). Small, 2017, 13, .                                            | 10.0 | 0         |
| 32 | Label-Free Monitoring of Single Molecule Immunoreaction with a Nanopipette. Analytical Chemistry, 2017, 89, 8203-8206.                                                                              | 6.5  | 51        |
| 33 | Single antibody–antigen interactions monitored via transient ionic current recording using nanopore sensors. Chemical Communications, 2017, 53, 8620-8623.                                          | 4.1  | 52        |
| 34 | Wireless Bipolar Nanopore Electrode for Single Small Molecule Detection. Analytical Chemistry, 2017,<br>89, 7382-7387.                                                                              | 6.5  | 84        |
| 35 | Analysis of Single-entity Anisotropy with a Solid-state Nanopore. Acta Chimica Sinica, 2017, 75, 675.                                                                                               | 1.4  | 7         |
| 36 | A Scattering Nanopore for Single Nanoentity Sensing. ACS Sensors, 2016, 1, 1086-1090.                                                                                                               | 7.8  | 48        |

Rui Gao

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ultrasensitive determination of mercury(II) using glass nanopores functionalized with macrocyclic dioxotetraamines. Mikrochimica Acta, 2016, 183, 491-495.    | 5.0  | 24        |
| 38 | A Low Noise Amplifier System for Nanopore-based Single Molecule Analysis. Chinese Journal of<br>Analytical Chemistry, 2015, 43, 971-976.                      | 1.7  | 11        |
| 39 | An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore. Faraday Discussions, 2015, 184, 85-99. | 3.2  | 18        |
| 40 | An integrated current measurement system for nanopore analysis. Science Bulletin, 2014, 59, 4968-4973.                                                        | 1.7  | 21        |
| 41 | Nanoporeâ€Based Sequencing and Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2013, 52, 13154-13161.                                  | 13.8 | 236       |