Palanivel Ramaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7191271/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Prediction of tensile strength and assessing the influence of process parameters of magnetically impelled arc butt welded AISI 409 ferritic stainless steel tubes. International Journal of Advanced Manufacturing Technology, 2022, 118, 417-432.	3.0	2
2	Influence of arc duration on microstructure and tensile behavior of magnetically impelled arc butt welded AISI 409 ferritic stainless steel tubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142257.	5.6	5
3	An Assessment of Microstructure and Tensile Behavior of Magnetically Impelled Arc Butt Welded AISI 409 Ferritic Stainless Steel Tubes. Journal of Materials Engineering and Performance, 2022, 31, 7808-7819.	2.5	4
4	In-situ synthesis and microstructural characterization of AA6061/(TiB2 + TiC) particles in AA6061 aluminium composite. Materials Today: Proceedings, 2021, 43, 2255-2258.	1.8	2
5	Assessment of Microstructure and Tensile Behavior of Hot Wire Gas Tungsten Arc Welded Pure Nickel Tubes. Transactions of the Indian Institute of Metals, 2021, 74, 355-368.	1.5	1
6	Microstructure and sliding wear behavior of fly ash reinforced dual phase brass surface composites synthesized through friction stir processing. Materials Chemistry and Physics, 2021, 263, 124430.	4.0	8
7	Effect of Tool Rotational Speed on the Microstructure and Associated Mechanical Properties of Incrementally Formed Commercially Pure Titanium. Journal of Materials Engineering and Performance, 2021, 30, 7636-7644.	2.5	2
8	Effect of Nd:YAG laser welding on microstructure and mechanical properties of Incoloy alloy 800. Optics and Laser Technology, 2021, 140, 107039.	4.6	17
9	Microstructure and mechanical behavior of Nd:YAG laser beam welded high strength low alloy steel joints. Optik, 2020, 208, 164050.	2.9	10
10	Predicting the tensile strength and deducing the role of processing conditions of hot wire gas tungsten arc welded pure nickel tubes using an empirical relationship. International Journal of Pressure Vessels and Piping, 2020, 188, 104220.	2.6	6
11	Application of artificial neural network in predicting the wear rate of copper surface composites produced using friction stir processing. Australian Journal of Mechanical Engineering, 2020, , 1-12.	2.1	9
12	Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrix composites: Microstructure and tensile properties. Journal of Materials Research and Technology, 2020, 9, 4356-4367.	5.8	37
13	Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. Journal of Alloys and Compounds, 2019, 785, 531-541.	5.5	54
14	Application of an artificial neural network model to predict the ultimate tensile strength of friction-welded titanium tubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	11
15	Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network. Multidiscipline Modeling in Materials and Structures, 2019, 16, 409-423.	1.3	10
16	Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites. Journal of Manufacturing Processes, 2019, 38, 148-157.	5.9	28
17	A comparative study on microstructure and mechanical properties between friction and laser beam welded titanium tubes. Optik, 2019, 177, 102-111.	2.9	11
18	Prediction and optimization of the mechanical properties of dissimilar friction stir welding of aluminum alloys using design of experiments. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 1384-1394.	2.4	29

#	Article	IF	CITATIONS
19	Mechanical and wear behavior of LM25 Aluminium matrix hybrid composite reinforced with Boron carbide, Graphite and Iron oxide. Materials Today: Proceedings, 2018, 5, 27852-27860.	1.8	15
20	Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 317-326.	5.6	63
21	Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Materials Characterization, 2017, 125, 13-22.	4.4	103
22	Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 249-258.	5.6	23
23	Microstructure and mechanical characterization of continuous drive friction welded grade 2 seamless titanium tubes at different rotational speeds. International Journal of Pressure Vessels and Piping, 2017, 154, 17-28.	2.6	19
24	Microstructure evolution and mechanical characterization of Nd:YAG laser beam welded titanium tubes. Materials Characterization, 2017, 134, 225-235.	4.4	25
25	An investigation into the effect of friction welding parameters on tensile strength of titanium tubes by utilizing an empirical relationship. Measurement: Journal of the International Measurement Confederation, 2017, 98, 77-91.	5.0	22
26	Developing a friction-stir welding window for joining the dissimilar aluminum alloys AA6351 and AA5083. Materiali in Tehnologije, 2017, 51, 5-9.	0.5	2
27	Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB 2 hybrid aluminum composites synthesized by friction stir processing. Materials and Design, 2016, 106, 195-204.	7.0	135
28	Tensile strength prediction of dissimilar friction stir-welded AA6351–AA5083 using artificial neural network technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1647-1657.	1.6	32
29	Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. Journal of Magnesium and Alloys, 2015, 3, 76-78.	11.9	89
30	Mechanical and metallurgical properties of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Transactions of Nonferrous Metals Society of China, 2014, 24, 58-65.	4.2	50
31	Optimization of process parameters to maximize ultimate tensile strength of friction stir welded dissimilar aluminum alloys using response surface methodology. Journal of Central South University, 2013, 20, 2929-2938.	3.0	32
32	Prediction and Optimization of Wear Resistance of Friction Stir Welded Dissimilar Aluminum Alloy. Procedia Engineering, 2012, 38, 578-584.	1.2	21
33	Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Materials & Design, 2012, 40, 7-16.	5.1	252
34	Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology. Journal of Central South University, 2012, 19, 1-8.	3.0	41
35	DEVELOPMENT OF MATHEMATICAL MODEL TO PREDICT THE ULTIMATE TENSILE STRENGTH OF FRICTION STIR WELDED DISSIMILAR ALUMINUM ALLOY. Mechanika, 2012, 18, .	0.5	4
36	Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminum alloy. Journal of Engineering Science and Technology Review, 2011, 4, 25-31.	0.4	43

#	Article	IF	CITATIONS
37	Effect of Tool pin Profile and Axial Force on Tensile Behavior in Friction Stir Welding of Dissimilar Aluminum Alloys. Advanced Materials Research, 0, 415-417, 1140-1146.	0.3	2