
Shogo Shimazu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7190996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Hydrogenation Properties of Ni-Based Bimetallic Catalysts. Eng, 2022, 3, 60-77.	2.4	5
2	Specific lift-up behaviour of acetate-intercalated layered yttrium hydroxide interlayer in water: application for heterogeneous BrĄ̃nsted base catalysts toward Knoevenagel reactions. Catalysis Science and Technology, 2022, 12, 2061-2070.	4.1	3
3	Creation of Highly Reducible CuO Species by High-Temperature Calcination of a Cu-Al Layered Double Hydroxide: Selective Hydrogenation of Furfural into Furfuryl Alcohol with Formic Acid. Bulletin of the Chemical Society of Japan, 2022, 95, 121-128.	3.2	9
4	In Situ Generation of Catalytically Active CuO Species Derived from Cu-Al Layered Double Hydroxides for Acceptorless Alcohol Dehydrogenation. Chemistry Letters, 2022, 51, 334-337.	1.3	7
5	Chemoselective synthesis of imine and secondary amine from nitrobenzene and benzaldehyde by Ni3Sn2 alloy catalyst supported on TiO2. Molecular Catalysis, 2021, 505, 111503.	2.0	3
6	Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni–Sn alloy catalysts. RSC Advances, 2021, 12, 241-250.	3.6	6
7	The catalytic oxidation of 1-phenylethanol over SiO2 supported manganese oxide nanocluster prepared by PVP stabilized colloidal Mn as precursor. Catalysis Today, 2020, 352, 250-254.	4.4	2
8	Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans. Fuel Processing Technology, 2020, 200, 106308.	7.2	50
9	One-pot synthesis of aniline N-alkylation from benzyl alcohol over Cu-Fe catalyst. Applied Catalysis A: General, 2020, 602, 117519.	4.3	11
10	Preparation of Palladium-impregnated Fiber and Its Characteristics of Dechlorination of 2-chlorophenol. Radioisotopes, 2019, 68, 443-449.	0.2	0
11	Enhancement of Oxidative Dehydrogenation of Alcohols by Utilizing Hydrotalcite as Support of NiO Nanocluster Catalyst. Chemistry Letters, 2019, 48, 374-377.	1.3	0
12	Chemoselective Hydrogenation of 4-Nitrostyrene to 4-Aminostyrene by Highly Efficient TiO2 Supported Ni3Sn2 Alloy Catalyst. Bulletin of the Chemical Society of Japan, 2019, 92, 811-816.	3.2	11
13	One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni–Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 2019, 21, 2307-2315.	9.0	38
14	Development of Supported NiO Nanocluster for Aerobic Oxidation of 1-Phenylethanol and Elucidation of Reaction Mechanism via X-ray Analysis. Bulletin of the Chemical Society of Japan, 2019, 92, 840-846.	3.2	3
15	Adsorptive Removal of Arsenic(III) and Arsenic(V) from Aqueous Solution using Nickel–Zinc Hydroxyl Double Salts. Kagaku Kogaku Ronbunshu, 2019, 45, 80-85.	0.3	0
16	Study on the promoting effect of nickel silicate for 1-phenylethanol oxidation on supported NiO nanocluster catalysts. Catalysis Today, 2018, 307, 29-34.	4.4	9
17	Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol over a Nickel-Yttrium Oxide Catalyst Containing Ruthenium. Chemistry Letters, 2018, 47, 103-106.	1.3	12
18	Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445, 52-60.	2.0	29

#	Article	IF	CITATIONS
19	Highly Selective Transfer Hydrogenation of Carbonyl Compounds Using La2O3. Bulletin of the Chemical Society of Japan, 2018, 91, 1561-1569.	3.2	8
20	Preparation of a Highly Stable Pd-Perovskite Catalyst for Suzuki Couplings via a Low-Temperature Hydrothermal Treatment. ACS Omega, 2018, 3, 17528-17531.	3.5	4
21	Recyclable Pd-contained perovskite catalyst synthesized by a low temperature hydrothermal method for aerobic alcohol oxidation. Molecular Catalysis, 2018, 453, 132-138.	2.0	13
22	Acceptorless dehydrogenation of alcohols using Cu–Fe catalysts prepared from Cu–Fe layered double hydroxides as precursors. Catalysis Science and Technology, 2018, 8, 3010-3014.	4.1	20
23	Kaolinite Catalyst for the Production of a Biodiesel-Based Compound from Biomass-Derived Furfuryl Alcohol. ACS Applied Energy Materials, 2018, 1, 2460-2463.	5.1	11
24	Chemoselective Hydrogenation of Unsaturated Nitro Compounds to Unsaturated Amines by Ni-Sn Alloy Catalysts. Chemistry Letters, 2018, 47, 971-974.	1.3	14
25	Synthesis of 1,5â€Pentanediol by Hydrogenolysis of Furfuryl Alcohol over Ni–Y ₂ O ₃ Composite Catalyst. ChemCatChem, 2017, 9, 2869-2874.	3.7	40
26	Hydrogenolysis of Furfural into 1,5-Pentanediol by Employing Ni-M (M = Y or La) Composite Catalysts. Chemistry Letters, 2017, 46, 744-746.	1.3	21
27	Efficiently Recyclable and Easily Separable Ni-Fe Alloy Catalysts for Chemoselective Hydrogenation of Biomass-derived Furfural. Chemistry Letters, 2017, 46, 149-151.	1.3	15
28	Highly Catalytic Performance of La ₂ O ₃ in the Selective Transfer Hydrogenation of Biomass-derived Furfural. Chemistry Letters, 2017, 46, 1580-1583.	1.3	13
29	Selective hydrogenation of unsaturated carbonyls by Ni–Fe-based alloy catalysts. Catalysis Science and Technology, 2017, 7, 3637-3646.	4.1	37
30	Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst. Catalysis Today, 2016, 265, 90-94.	4.4	11
31	Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catalysis Science and Technology, 2016, 6, 2955-2961.	4.1	37
32	Hydrophenylation of internal alkynes with boronic acids catalysed by a Ni–Zn hydroxy double salt-intercalated anionic rhodium(<scp>iii</scp>) complex. Catalysis Science and Technology, 2016, 6, 863-868.	4.1	9
33	Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 1.	1.1	9
34	Hydrogenation of Biomass-derived Furfural Over Highly Dispersed-Aluminium Hydroxide Supported Ni-Sn(3.0) Alloy Catalysts. Procedia Chemistry, 2015, 16, 531-539.	0.7	11
35	Epoxidation of cyclic enones with hydrogen peroxide catalysed by alkylcarboxylate-intercalated Ni–Zn mixed basic salts. Catalysis Science and Technology, 2015, 5, 578-583.	4.1	12
36	Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering and Catalysis, 2014, 9, 53-59.	1.1	19

#	Article	IF	CITATIONS
37	Efficient 1,4-Addition of Enones and Boronic Acids Catalyzed by a Ni–Zn Hydroxyl Double Salt-Intercalated Anionic Rhodium(III) Complex. ACS Catalysis, 2014, 4, 4040-4046.	11.2	23
38	XAFS and HAADF STEM combined characterization for size regulated Ni nanocluster catalyst and its unique size dependence for water gas shift reaction. Applied Catalysis A: General, 2014, 478, 66-70.	4.3	12
39	Iron oxide-pillared clay catalyzed the synthesis of acetonides from epoxides. Catalysis Communications, 2014, 54, 104-107.	3.3	7
40	Effect of Local Structure of Mo Oxide on Selective Photo-Oxidation of Propane to Acetone. Catalysis Letters, 2013, 143, 154-158.	2.6	6
41	Recyclable Pd-Incorporated Perovskite-Titanate Catalysts Synthesized in Molten Salts for the Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Bulletin of the Chemical Society of Japan, 2013, 86, 146-152.	3.2	8
42	TOTAL HYDROGENATION OF BIOMASS-DERIVED FURFURAL OVER RANEY NICKEL-CLAY NANOCOMPOSITE CATALYSTS. Indonesian Journal of Chemistry, 2013, 13, 101-107.	0.8	5
43	Development of multifunctional intercalation catalysts by means of inorganic layer compounds. Journal of Ion Exchange, 2013, 24, 1-7.	0.3	0
44	Multinuclear Solid-State NMR Study of Allophane. Bulletin of the Chemical Society of Japan, 2012, 85, 372-375.	3.2	2
45	CaO-catalyzed Aerobic Oxidation of α-Hydroxy Ketones: Application to One-pot Synthesis of Quinoxaline Derivatives. Chemistry Letters, 2012, 41, 488-490.	1.3	9
46	A Novel Preparation Method of Ni–Sn Alloy Catalysts Supported on Aluminium Hydroxide: Application to Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds. Chemistry Letters, 2012, 41, 769-771.	1.3	29
47	Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catalysis Science and Technology, 2012, 2, 2139.	4.1	116
48	Preparation of clay-supported Sn catalysts and application to Baeyer–Villiger oxidation. Green Chemistry, 2012, 14, 771.	9.0	39
49	Preparation and Catalysis of Supported NiO Nanocluster for Oxidative Coupling of Thiophenol. Transactions of the Materials Research Society of Japan, 2012, 37, 177-180.	0.2	7
50	Oxidative cleavage of isoeugenol to vanillin under molecular oxygen catalysed by cobalt porphyrin intercalated into lithium taeniolite clay. Journal of Molecular Catalysis A, 2012, 361-362, 72-79.	4.8	31
51	Size Control of Ni Nanocluster by the Carbon Chain Length of Secondary Alkoxide. E-Journal of Surface Science and Nanotechnology, 2012, 10, 648-650.	0.4	5
52	Ring-Opening of Oxiranes using Taeniolite-Supported Tris(β-Diketonato)Zirconium. ITB Journal of Science, 2012, 44, 263-274.	0.1	1
53	An anionic d-valine–palladium(ii) complex supported on a hydroxy double salt with a BrÃınsted basic phosphate anion: application for a heterogeneous catalyst toward aerobic alcohol oxidation. Catalysis Science and Technology, 2011, 1, 1376.	4.1	23
54	Characterization of Heat-Treated Synthetic Imogolite by 27Al MAS and 27Al MQMAS Solid-State NMR. Bulletin of the Chemical Society of Japan, 2011, 84, 656-659.	3.2	10

#	Article	IF	CITATIONS
55	Highly Efficient Pd/SiO2–Dimethyl Sulfoxide Catalyst System for Selective Semihydrogenation of Alkynes. Chemistry Letters, 2011, 40, 405-407.	1.3	51
56	Hemicellulose decomposition and saccharides production from various plant biomass by sulfonated allophane catalyst. Catalysis Today, 2011, 164, 415-418.	4.4	25
57	Fine Tuning of Pd0 Nanoparticle Formation on Hydroxyapatite and Its Application for Regioselective Quinoline Hydrogenation. Chemistry Letters, 2010, 39, 832-834.	1.3	49
58	Complete Hydrodechlorination of DDT and Its Derivatives Using a Hydroxyapatite-supported Pd Nanoparticle Catalyst. Chemistry Letters, 2010, 39, 49-51.	1.3	14
59	Size Control of Catalytic Reaction Space by Intercalation of Alkylcarboxylate Anions into Ni–Zn Mixed Basic Salt Interlayer: Application for Knoevenagel Reaction in Water. Chemistry Letters, 2010, 39, 304-305.	1.3	17
60	CHARACTERIZATION OF SORBENT PRODUCED THROUGH IMMOBILIZATION OF HUMIC ACID ON CHITOSAN USING GLUTARALDEHYDE AS CROSS-LINKING AGENT AND Pb(II) ION AS ACTIVE SITE PROTECTOR. Indonesian Journal of Chemistry, 2010, 10, 301-309.	0.8	4
61	Promotional Effect of Iron for the Nitridation of Niobium Oxide to Niobium Nitride. Topics in Catalysis, 2009, 52, 1517-1524.	2.8	7
62	Creation of highly stable monomeric Pd(II) species in an anion-exchangeable hydroxy double salt interlayer: Application to aerobic alcohol oxidation under an air atmosphere. Green Chemistry, 2009, 11, 2034.	9.0	51
63	Characterization of CuMn-spinel catalyst for methanol steam reforming. Catalysis Communications, 2009, 10, 1800-1803.	3.3	42
64	Selective Production of Xylose and Xylo-oligosaccharides from Bamboo Biomass by Sulfonated Allophane Solid Acid Catalyst. Chemistry Letters, 2009, 38, 1176-1177.	1.3	17
65	Highly efficient alcohol oxidation catalyzed by palladium(II)–alkylamine complexes using atmospheric molecular oxygen. Journal of Molecular Catalysis A, 2008, 282, 28-33.	4.8	15
66	The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME). Applied Catalysis A: General, 2008, 348, 193-200.	4.3	74
67	Preparation of supported NbC catalysts from peroxoniobic acid and in situ XAFS characterization. Applied Catalysis A: General, 2008, 343, 25-28.	4.3	7
68	In-Situ XAFS Characterization for Nitriding Process of Silica Supported Nb Catalysts Under N2-H2 Gas. AIP Conference Proceedings, 2007, , .	0.4	1
69	Regioselective Ring Opening Reactions of Oxiranes with Acrylic Acid by Clay Supported Zirconium .BETADiketonate Catalysts. Journal of Ion Exchange, 2007, 18, 584-589.	0.3	4
70	XAFS Study of the Photo-Active Site of Mo/MCM-41. AIP Conference Proceedings, 2007, , .	0.4	1
71	Effect of Co addition for carburizing process of Ti-oxide/SiO2 into TiC/SiO2. Applied Catalysis A: General, 2007, 323, 104-109.	4.3	5
72	Nano-Structured Catalysts Prepared by the Intercalation of Metal Complexes into Inorganic Ion Exchangers. Journal of Ion Exchange, 2007, 18, 60-67.	0.3	0

#	Article	IF	CITATIONS
73	Amino acid adsorption onto mesoporous silica molecular sieves. Separation and Purification Technology, 2006, 48, 197-201.	7.9	81
74	Multiple Scattering Approach to Au L3edge XANES of sprAuAl2O3 Catalyst. Physica Scripta, 2005, , 756.	2.5	1
75	Studies on tris(β-diketonato)zirconium (IV); syntheses, characterization and catalytic activity for ring opening of oxiranes. Catalysis Communications, 2005, 6, 426-430.	3.3	15
76	New development of inorganic ion exchanger: Acidic Property of Fe(III)-Taeniolite. Journal of Ion Exchange, 2005, 16, 60-64.	0.3	1
77	Activation of Bulk MoO3Catalysts by Spray Reaction Method for Propene Photometathesis Reaction. Catalysis Letters, 2004, 93, 177-180.	2.6	6
78	Selective synthesis of primary methoxypropanol using clay supported tris(2,4-pentanedionato)zirconium(IV). Journal of Molecular Catalysis A, 2004, 221, 141-144.	4.8	6
79	Synthesis of Novel Nano-structured Clays: Unique Conformation of Pillar Complexes. Chemistry Letters, 2004, 33, 208-209.	1.3	9
80	Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation. Applied Catalysis A: General, 2003, 246, 87-95.	4.3	94
81	Preparation of mesoporous silica anchored mo catalysts and in-situ XAFS characterization under propene photometathesis reaction. Studies in Surface Science and Catalysis, 2003, , 359-362.	1.5	3
82	Asymmetric Hydrogenation of Acetophenone by Rh(I)-BINAP Supported on Smectites with Various Interlayer Distances. Journal of Ion Exchange, 2003, 14, 397-400.	0.3	2
83	New application of spray reaction technique to the preparation of supported gold catalysts for environmental catalysis. Journal of Molecular Catalysis A, 2002, 182-183, 209-214.	4.8	11
84	Regioselective hydrogenation of dienes catalyzed by palladium–aminosilane complexes grafted on MCM-41. Journal of Molecular Catalysis A, 2002, 182-183, 343-350.	4.8	26
85	XAFS Analysis for Niobium Carbide Particle Growth on Silica Support During Preparation Process. Topics in Catalysis, 2002, 18, 101-104.	2.8	7
86	Characteristics of supported gold catalysts prepared by spray reaction method. Studies in Surface Science and Catalysis, 2001, , 769-772.	1.5	2
87	Suspended Spray Reaction for Preparation of Ru/Al2O3Catalyst. Chemistry Letters, 2000, 29, 652-653.	1.3	3
88	Promoting effect of NiAl2O4 for supported Ni particles on sprayed Ni/Al2O3 catalysts. Catalysis Letters, 2000, 69, 33-36.	2.6	30
89	Asymmetric hydrogenation of itaconates by hectorite-intercalated Rh-DIOP complex. Journal of Molecular Catalysis A, 1999, 137, 263-267.	4.8	33
90	Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction. Applied Catalysis A: General, 1999, 180, 227-235.	4.3	106

5

#	Article	IF	CITATIONS
91	Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Applied Catalysis A: General, 1998, 172, 351-358.	4.3	80
92	New Clay-Supported Chiral Rhodium Complexes: Interlayer Modification with Structural Tuning Guests and Asymmetric Hydrogenation. Chemistry Letters, 1998, 27, 1191-1192.	1.3	9
93	Chemical Modification of Ion Exchangers by Soft-Chemical Methods and Application to Catalysis for Molecular Recognition Reactions Journal of Ion Exchange, 1997, 8, 29-43.	0.3	0
94	Asymmetric hydrogenation of α,β-unsaturated carboxylic acid esters by rhodium(I) — phosphine complexes supported on smectites. Journal of Molecular Catalysis A, 1996, 107, 297-303.	4.8	49
95	Control of photochemistry of stilbazolium ion by adsorption to poly(potassium vinylsulfate) and to hectorite clay. Macromolecular Rapid Communications, 1995, 16, 717-723.	3.9	3
96	Modification of layer compounds for molecular recognition. Studies in Surface Science and Catalysis, 1995, 98, 142-143.	1.5	1
97	Catalytic Activities for Dehydration of Alcohols over Synthetic Lithium Taeniolites Exchanged with Cations Journal of Ion Exchange, 1995, 6, 16-22.	0.3	0
98	Selective Organic Synthesis by Clay Supported Metal Complexes Sekiyu Gakkaishi (Journal of the Japan) Tj ETQc	10 8 0 rgB1	/ / gverlock 1
99	Hydrogenation of CO2 over metal supported fine particles. Studies in Surface Science and Catalysis, 1993, 77, 397-400.	1.5	3
100	Asymmetric Recognition of Hectorite Modified with Chiral Arylethylammonium. Chemistry Letters, 1993, 22, 989-992.	1.3	5
101	Preparation of Clay-Supported Metal Complexes and Application to Catalyses for Molecular Recognition Reactions Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 664-670.	0.1	4
102	Selective hydrogenation of alkynes by hectorite-intercalated PD[II] complexes. Catalysis Today, 1989, 6, 141-146.	4.4	14
103	Catalytic behaviour of interlayer-supported palladium(II) complexes on lithium hectorite. Journal of Molecular Catalysis, 1989, 55, 353-360.	1.2	10
104	Pillarization of lithium hectorite with metal complexes bearing large chelate ligands. Journal of Materials Science Letters, 1989, 8, 1368-1370.	0.5	4

105	PREPARATION OF Ba2YCu3O7â^'x BY SPRAY DECOMPOSITION METHOD. Modern Physics Letters B, 1988, 02, 501-504.	1.9	8
106	Shape selective hydrogenation by ruthenium-hectorite catalysts with various interlayer distances. Applied Catalysis, 1987, 34, 255-261.	0.8	25
107	Methanol carbonylation catalyzed by polymer-supported rhodium complexes. Applied Catalysis, 1987, 35, 279-288.	0.8	9

108Effect of glass transition on catalytic activity of polymer-anchored rhodium complexes. Die
Makromolekulare Chemie, 1987, 188, 1085-1093.1.1

#	Article	IF	CITATIONS
109	Preparation and Characterization of a Resin-Supported Palladium Catalyst. Bulletin of the Chemical Society of Japan, 1986, 59, 3637-3642.	3.2	7