Seiichi takamatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic sensing with organic electrochemical transistors. Journal of Materials Chemistry, 2008, 18, 116-120.	6.7	317
2	Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 2016, 28, 4485-4488.	21.0	159
3	Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Scientific Reports, 2015, 5, 15003.	3.3	145
4	Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors and Actuators B: Chemical, 2007, 123, 374-378.	7.8	134
5	Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sensors and Actuators A: Physical, 2012, 184, 57-63.	4.1	112
6	Transparent conductive-polymer strain sensors for touch input sheets of flexible displays. Journal of Micromechanics and Microengineering, 2010, 20, 075017.	2.6	58
7	Ultra-Thin Piezoelectric Strain Sensor Array Integrated on a Flexible Printed Circuit Involving Transfer Printing Methods. IEEE Sensors Journal, 2016, 16, 8840-8846.	4.7	49
8	Printed strain sensor array for application to structural health monitoring. Smart Materials and Structures, 2017, 26, 105040.	3.5	44
9	Lightweight flexible keyboard with a conductive polymer-based touch sensor fabric. Sensors and Actuators A: Physical, 2014, 220, 153-158.	4.1	30
10	Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles. Advanced Healthcare Materials, 2016, 5, 2001-2006.	7.6	30
11	Fabrication and evaluation of a conductive polymer coated elastomer contact structure for woven electronic textile. Sensors and Actuators A: Physical, 2013, 195, 213-218.	4.1	27
12	Printed strain sensor with temperature compensation and its evaluation with an example of applications in structural health monitoring. Japanese Journal of Applied Physics, 2017, 56, 05EC02.	1.5	24
13	Thin-film flexible sensor for omnidirectional strain measurements. Sensors and Actuators A: Physical, 2017, 263, 391-397.	4.1	24
14	Flexible, organic light-pen input device with integrated display. Sensors and Actuators B: Chemical, 2008, 135, 122-127.	7.8	22
15	Micro-patterning of a conductive polymer and an insulation polymer using the Parylene lift-off method for electrochromic displays. Journal of Micromechanics and Microengineering, 2011, 21, 075021.	2.6	22
16	Development of Noncontact Body Temperature Monitoring and Prediction System for Livestock Cattle. IEEE Sensors Journal, 2021, 21, 9367-9376.	4.7	17
17	Meter-scale large-area capacitive pressure sensors with fabric with stripe electrodes of conductive polymer-coated fibers. Microsystem Technologies, 2016, 22, 451-457.	2.0	16
18	Unique Activity-Meter with Piezoelectric Poly(vinylidene difluoride) Films and Self Weight of the Sensor Nodes. Japanese Journal of Applied Physics, 2013, 52, 09KD15.	1.5	12

#	Article	IF	CITATIONS
19	Development of Flexible Piezoelectric Strain Sensor Array. Electrical Engineering in Japan (English) Tj ETQq1 1 ().784314 rg	gBT/Overlock
20	Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors. Sensors, 2010, 10, 5888-5898.	3.8	10
21	Printed strain sensors for early damage detection in engineering structures. Japanese Journal of Applied Physics, 2018, 57, 05GD05.	1.5	10
22	Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter. Scientific Reports, 2019, 9, 1893.	3.3	9
23	All Polymer Piezoelectric Film for the Application to Low Resonance Frequency Energy Harvester. Procedia Engineering, 2011, 25, 203-206.	1.2	7
24	Valve-Actuator-Integrated Reference Electrode for an Ultra-Long-Life Rumen pH Sensor. Sensors, 2020, 20, 1249.	3.8	7
25	The photo charge of a bacterioRhodopsin electrochemical cells measured by a charge amplifier. IEICE Electronics Express, 2011, 8, 505-511.	0.8	5
26	Piezoelectric strain sensor array fabricated by transfer printing methods. , 2015, , .		5
27	Soft-rubber-packaged Pb(Zr,Ti)O ₃ MEMS touch sensors for human–machine interface applications. Japanese Journal of Applied Physics, 2017, 56, 04CC04.	1.5	5
28	Fabrication of conductive polymer coated elastomer contact structures using a reel-to-reel continuous fiber process. IEICE Electronics Express, 2012, 9, 1442-1447.	0.8	4
29	Novel MEMS Devices Based on Conductive Polymers. Electrochemical Society Interface, 2012, 21, 63-66.	0.4	4
30	High-Speed Coating Method for Photovoltaic Textiles with Closed-Type Die Coater. Japanese Journal of Applied Physics, 2013, 52, 060201.	1.5	4
31	Long wavy copper stretchable interconnects fabricated by continuous microcorrugation process for wearable applications. Engineering Reports, 2020, 2, e12143.	1.7	4
32	Patterning PEDOT:PSS with Parylene Peel-off Method. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 394-400.	0.1	4
33	Encapsulation Method of Glucose Oxidase Solution with Ionic Liquid Solvent and Direct Parylene Deposition. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 562-569.	0.1	4
34	Improvement of Electrical Contact Reliability by Conductive Polymer Coated Elastomer Structure in Woven Electronic Textiles. Japanese Journal of Applied Physics, 2012, 51, 120204.	1.5	4
35	Photosensitive protein patterning with electrophoretic deposition. IEICE Electronics Express, 2010, 7, 779-784.	0.8	3
36	Improvement of Electrical Contact Reliability by Conductive Polymer Coated Elastomer Structure in Woven Electronic Textiles. Japanese Journal of Applied Physics, 2012, 51, 120204.	1.5	3

SEIICHI ТАКАМАТSU

#	Article	IF	CITATIONS
37	Meter-scale large area LED-embedded light fabric for the application of fabric ceilings in rooms. Microsystem Technologies, 2015, 21, 1209-1217.	2.0	3
38	Ultra-thin piezoelectric strain sensor array integrated on flexible printed circuit for structural health monitoring. , 2016, , .		3
39	Fabrication and evaluation of LED-embedded ribbons for highly flexible lighting applications in rooms. Microsystem Technologies, 2016, 22, 1079-1087.	2.0	3
40	Stress concentration-relocating interposer in electronic textile packaging using thermoplastic elastic polyurethane film with via holes for bearing textile stretch. Scientific Reports, 2022, 12, .	3.3	3
41	Glove-shaped wearable device using flexible MEMS sensor. , 2022, , .		3
42	Meter-scale pressure sensor array with woven conductive-polymer-coated fibers. , 2014, , .		2
43	Mechanical characterization of biomedical electrode on knit textile. , 2016, , .		2
44	Flexible Contact Pressure Sensor based on Ultrathin Piezoresistive Silicon Membrane Capable of Strain Compensation. Sensors and Materials, 2018, 30, 2999.	0.5	2
45	High-Throughput and Low-Cost Fabrication of Polymer Microscanner for Lighting Applications. Japanese Journal of Applied Physics, 2013, 52, 106701.	1.5	1
46	Simple micro-patterning of high conductive polymer with UV-nano-imprinted patterned substrate and ethylene glycol-based second doping. Journal of Micromechanics and Microengineering, 2014, 24, 045024.	2.6	1
47	Piezoelectric PVDF film switch to activate event-driven system for chicken health monitoring. , 2014, , .		1
48	Antistiction technique using elastomer contact structure in woven electronic textiles. Japanese Journal of Applied Physics, 2014, 53, 04EK03.	1.5	1
49	Development of reel-to-reel microchip mounting system for fabrication of meter-long LED lighting tapes. Microsystem Technologies, 2014, 20, 2247-2253.	2.0	1
50	Printed carbon-based sensors array for measuring 2D dynamic strain distribution and application in structural health monitoring. , 2016, , .		1
51	Stretchable Wavy Piezoelectric Sensor Fabricated by Micro-Corrugation Process. , 2019, , .		1
52	All Polymer Piezoelectric Film for Low Resonance Frequency Vibration Driven Energy Harvesting Application. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 285-289.	0.1	1
53	Development of Flexible Piezoelectric Strain Sensor Array. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 438-443.	0.1	1
54	Meter-scale Flexible Touch Sensor Using Projection Capacitive Measurement Technique and Fabric Electrode for Human Position Detection. Sensors and Materials, 2018, 30, 3039.	0.5	1

SEIICHI ТАКАМАТSU

#	Article	IF	CITATIONS
55	Pilot Study on the Development of a New Wearable Tactile Feedback Device for Welding Skills Training. Communications in Computer and Information Science, 2020, , 123-128.	0.5	1
56	Urethane-Foam-Embedded Silicon Pressure Sensors including Stress-Concentration Packaging Structure for Driver Posture Monitoring. Sensors, 2022, 22, 4495.	3.8	1
57	Fabrication and demonstration of an electrochromic voxel array for a volume display prototype. IEICE Electronics Express, 2010, 7, 920-924.	0.8	0
58	Fabrication of fabric LED array. , 2015, , .		0
59	A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles. Journal of Visualized Experiments, 2017, , .	0.3	0
60	Cantilever structure placed in liquid sandwiched between soft-thin membranes to realize wide bandwidth harvester. Applied Physics Letters, 2019, 115, 183902.	3.3	0
61	Electrolyte-Flow-Controlled Reference Electrode using Hydrogen Pressure for an Ultra-Long-Life Rumen pH Sensor. , 2019, , .		0
62	Wearable MEMS Sensor Nodes for Animal Health Monitoring System. , 2022, , 283-305.		0
63	Fabrication and Demonstration of an Organic Electrochromic Volume Display Prototype. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 550-551.	0.1	0
64	Research on Electrical Contact Structures for Woven Electronic Textiles at BEANS Project. Journal of Japan Institute of Electronics Packaging, 2013, 16, 96-100.	0.1	0
65	Study on Wiring and Mounting Structures for Smart Suits with Actuators. , 2022, , .		0