
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7190188/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inter-species functional compatibility of the Theobroma cacao and Arabidopsis FT orthologs: 90 million years of functional conservation of meristem identity genes. BMC Plant Biology, 2021, 21, 218.                                        | 1.6 | 3         |
| 2  | Transcriptomic analyses of cacao flavonoids produced in photobioreactors. BMC Genomics, 2021, 22, 551.                                                                                                                                       | 1.2 | 3         |
| 3  | Genomic structural variants constrain and facilitate adaptation in natural populations of<br><i>Theobroma cacao</i> , the chocolate tree. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, .   | 3.3 | 50        |
| 4  | Gene Expression Modularity Reveals Footprints of Polygenic Adaptation in Theobroma cacao.<br>Molecular Biology and Evolution, 2020, 37, 110-123.                                                                                             | 3.5 | 22        |
| 5  | Widely distributed variation in tolerance to Phytophthora palmivora in four genetic groups of cacao.<br>Tree Genetics and Genomes, 2020, 16, 1.                                                                                              | 0.6 | 15        |
| 6  | Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in<br>Theobroma cacao. Frontiers in Plant Science, 2020, 11, 617520.                                                                               | 1.7 | 15        |
| 7  | Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. Plant Molecular Biology, 2019, 99, 499-516.                                                    | 2.0 | 24        |
| 8  | Glucocorticoid receptor-regulated TcLEC2 expression triggers somatic embryogenesis in Theobroma cacao leaf tissue. PLoS ONE, 2018, 13, e0207666.                                                                                             | 1.1 | 10        |
| 9  | Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Scientific Reports, 2018, 8, 13575.                                                                            | 1.6 | 14        |
| 10 | Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. Frontiers in Plant Science, 2018, 9, 268.                                                                                       | 1.7 | 192       |
| 11 | Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black<br>Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome<br>Biology and Evolution, 2017, 9, 536-557. | 1.1 | 71        |
| 12 | Enhanced resistance in <i><scp>T</scp>heobroma cacao</i> against oomycete and fungal pathogens by secretion of phosphatidylinositolâ€3â€phosphateâ€binding proteins. Plant Biotechnology Journal, 2016, 14, 875-886.                         | 4.1 | 45        |
| 13 | Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization. BMC Genomics, 2016, 17, 363.                                                                        | 1.2 | 45        |
| 14 | Protocol: transient expression system for functional genomics in the tropical tree Theobroma cacao<br>L. Plant Methods, 2016, 12, 19.                                                                                                        | 1.9 | 38        |
| 15 | Two <i>Theobroma cacao</i> genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment. Journal of Experimental Botany, 2015, 66, 6245-6258.                                | 2.4 | 29        |
| 16 | Application of glycerol as a foliar spray activates the defence response and enhances disease<br>resistance of <i><scp>T</scp>heobroma cacao</i> . Molecular Plant Pathology, 2015, 16, 27-37.                                               | 2.0 | 32        |
| 17 | Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. Journal of Plant Physiology, 2015, 180, 49-60.                                                                                                       | 1.6 | 19        |
| 18 | Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,<br>Theobroma cacao L. Frontiers in Plant Science, 2015, 6, 239.                                                                              | 1.7 | 62        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tc-MYBPA is an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao. BMC Plant Biology, 2015, 15, 160.                                                                              | 1.6 | 31        |
| 20 | Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology, 2015, 15, 121.                                                                                                                  | 1.6 | 123       |
| 21 | Yield Performance and Bean Quality Traits of Cacao Propagated by Grafting and Somatic<br>Embryo-derived Cuttings. Hortscience: A Publication of the American Society for Hortcultural<br>Science, 2015, 50, 358-362.                                      | 0.5 | 17        |
| 22 | Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 2014, 5, 479.                                                                                           | 1.5 | 135       |
| 23 | Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic<br>embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biology, 2014, 14, 185.                                                           | 1.6 | 27        |
| 24 | The Theobroma cacao B3 domain transcription factor TcLEC2plays a duel role in control of embryo development and maturation. BMC Plant Biology, 2014, 14, 106.                                                                                             | 1.6 | 46        |
| 25 | TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant<br>Biology, 2013, 13, 204.                                                                                                                               | 1.6 | 31        |
| 26 | Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase,<br>anthocyanidin reductase, and leucoanthocyanidin reductase. BMC Plant Biology, 2013, 13, 202.                                                                     | 1.6 | 94        |
| 27 | Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to<br>necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri. Physiological and<br>Molecular Plant Pathology, 2013, 81, 84-96.                | 1.3 | 33        |
| 28 | Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polymer Chemistry, 2013, 4, 1826.                                                                                                    | 1.9 | 43        |
| 29 | The Salicylic Acid Receptor NPR3 Is a Negative Regulator of the Transcriptional Defense Response during Early Flower Development in Arabidopsis. Molecular Plant, 2013, 6, 802-816.                                                                       | 3.9 | 58        |
| 30 | Expression of Designed Antimicrobial Peptides in <i>Theobroma cacao</i> L. Trees Reduces Leaf Necrosis<br>Caused by <i>Phytophthora</i> spp ACS Symposium Series, 2012, , 379-395.                                                                        | 0.5 | 13        |
| 31 | Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize Â. Plant<br>Physiology, 2011, 156, 479-490.                                                                                                               | 2.3 | 36        |
| 32 | The genome of Theobroma cacao. Nature Genetics, 2011, 43, 101-108.                                                                                                                                                                                        | 9.4 | 656       |
| 33 | Genes Acquired by Horizontal Transfer Are Potentially Involved in the Evolution of<br>Phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, Two of the Major<br>Pathogens of Cacao. Journal of Molecular Evolution, 2010, 70, 85-97. | 0.8 | 34        |
| 34 | Deciphering the genome structure and paleohistory of Theobroma cacao. Nature Precedings, 2010, , .                                                                                                                                                        | 0.1 | 1         |
| 35 | Functional analysis of the Theobroma cacao NPR1 gene in arabidopsis. BMC Plant Biology, 2010, 10, 248.                                                                                                                                                    | 1.6 | 63        |
| 36 | Functional Genomics of Cacao. Advances in Botanical Research, 2010, 55, 119-177.                                                                                                                                                                          | 0.5 | 17        |

3

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Infection Biology of Moniliophthora perniciosa on Theobroma cacao and Alternate Solanaceous<br>Hosts. Tropical Plant Biology, 2009, 2, 149-160.                                                                                                | 1.0 | 30        |
| 38 | Hydrogen production by Clostridium acetobutylicum ATCC 824Âand megaplasmid-deficient mutant M5<br>evaluated using a large headspace volume technique. International Journal of Hydrogen Energy, 2009,<br>34, 9347-9353.                        | 3.8 | 51        |
| 39 | Field performance of Theobroma cacao L. plants propagated via somatic embryogenesis. In Vitro<br>Cellular and Developmental Biology - Plant, 2008, 44, 487-493.                                                                                | 0.9 | 19        |
| 40 | Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics, 2008, 9, 512.                  | 1.2 | 112       |
| 41 | A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao. BMC Genomics, 2008, 9, 548.                                                                                                              | 1.2 | 120       |
| 42 | Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 2008, 46, 46-56.                                                                                   | 1.4 | 119       |
| 43 | Genomics of Theobroma cacao, "the Food of the Godsâ€, , 2008, , 145-170.                                                                                                                                                                       |     | 15        |
| 44 | Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules. Carbohydrate Research, 2007, 342, 2619-2627.                                                                            | 1.1 | 24        |
| 45 | The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch<br>Granule Ring Structure. Starch/Staerke, 2006, 58, 1-5.                                                                                    | 1.1 | 11        |
| 46 | Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 2006, 224, 740-749.                                                                  | 1.6 | 79        |
| 47 | Effects of Carbon Source and Explant Type on Somatic Embryogenesis of Four Cacao Genotypes.<br>Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 753-758.                                                 | 0.5 | 17        |
| 48 | High-performance size-exclusion chromatography (HPSEC) and fluorophore-assisted carbohydrate<br>electrophoresis (FACE) to describe the chain-length distribution of debranched starch. Carbohydrate<br>Research, 2005, 340, 701-710.           | 1.1 | 22        |
| 49 | Developmental expression of stress response genes in Theobroma cacao leaves and their response to<br>Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiology and<br>Biochemistry, 2005, 43, 611-622.             | 2.8 | 48        |
| 50 | Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Science, 2005, 168, 1247-1258.                                                                                       | 1.7 | 65        |
| 51 | Phosphatase Under-Producer Mutants Have Altered Phosphorus Relations. Plant Physiology, 2004, 135, 334-345.                                                                                                                                    | 2.3 | 58        |
| 52 | Maize Starch-Branching Enzyme Isoforms and Amylopectin Structure. In the Absence of<br>Starch-Branching Enzyme IIb, the Further Absence of Starch-Branching Enzyme Ia Leads to Increased<br>Branching. Plant Physiology, 2004, 136, 3515-3523. | 2.3 | 99        |
| 53 | Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant Cell Reports, 2004, 23, 404-413.                                                                                                 | 2.8 | 65        |
| 54 | Micropropagation of Theobroma cacao L. using somatic embryo-derived plants. In Vitro Cellular and<br>Developmental Biology - Plant, 2003, 39, 332-337.                                                                                         | 0.9 | 32        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Reports, 2003, 21, 872-883.                                                                                                                             | 2.8 | 67        |
| 56 | Moxalactam as a counter-selection antibiotic for Agrobacterium-mediated transformation and its positive effects on Theobroma cacao somatic embryogenesis. Plant Science, 2003, 164, 607-615.                                                                                 | 1.7 | 24        |
| 57 | Single Kernel Sampling Method for Maize Starch Analysis While Maintaining Kernel Vitality. Cereal<br>Chemistry, 2002, 79, 757-762.                                                                                                                                           | 1.1 | 9         |
| 58 | Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant<br>Molecular Biology, 2002, 48, 287-297.                                                                                                                              | 2.0 | 129       |
| 59 | Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 252-259.                                                                          | 0.9 | 98        |
| 60 | Identification of Mutator Insertional Mutants of Starch-Branching Enzyme 2a in Corn. Plant<br>Physiology, 2001, 125, 1396-1405.                                                                                                                                              | 2.3 | 116       |
| 61 | Identification of cis-Acting Elements Important for Expression of the Starch-Branching Enzyme I Gene<br>in Maize Endosperm. Plant Physiology, 1999, 121, 225-236.                                                                                                            | 2.3 | 47        |
| 62 | Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant<br>Molecular Biology, 1999, 41, 1-13.                                                                                                                                        | 2.0 | 49        |
| 63 | The maize EmBP-1 orthologue differentially regulates opaque2-dependent gene expression in yeast and cultured maize endosperm cells. Plant Molecular Biology, 1999, 41, 339-349.                                                                                              | 2.0 | 15        |
| 64 | Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein:<br>high transient expression and low stable transformation suggest that factors other than T-DNA<br>transfer are rate-limiting. Plant Molecular Biology, 1998, 37, 549-559. | 2.0 | 97        |
| 65 | Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Molecular Biology, 1998, 38, 945-956.                                                                                                               | 2.0 | 56        |
| 66 | Overexpression of deltaEmBP, a truncated dominant negative version of the wheat G-box binding<br>protein EmBP-1, alters vegetative development in transgenic tobacco. Plant Molecular Biology, 1998,<br>38, 539-549.                                                         | 2.0 | 6         |
| 67 | Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.)<br>using thidiazuron. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 293-299.                                                                                | 0.9 | 104       |
| 68 | Genomic organization and promoter activity of the maize starch branching enzyme I gene. Gene, 1998, 216, 233-243.                                                                                                                                                            | 1.0 | 24        |
| 69 | Two closely related cDNAs encoding starch branching enzyme from Arabidopsis thaliana. Plant<br>Molecular Biology, 1996, 30, 97-108.                                                                                                                                          | 2.0 | 50        |
| 70 | Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Molecular Biology, 1996, 30, 1223-1232.                                                                                            | 2.0 | 85        |
| 71 | cDNA encoding a wheat (Triticum aestivum cv. Chinese Spring) glycine-rich RNA-binding protein. Plant<br>Molecular Biology, 1996, 30, 1301-1306.                                                                                                                              | 2.0 | 10        |
| 72 | In vitro plantlet regeneration from cotyledon, hypocotyl and root explants of hybrid seed geranium.<br>Plant Cell, Tissue and Organ Culture, 1996, 45, 61-66.                                                                                                                | 1.2 | 14        |

| #  | Article                                                                                                                                                                                              | IF       | CITATIONS  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 73 | Binding of the Wheat Basic Leucine Zipper Protein EmBP-1 to Nucleosomal Binding Sites Is Modulated<br>by Nucleosome Positioning. Plant Cell, 1996, 8, 1569.                                          | 3.1      | 3          |
| 74 | Rapid, efficient production of homozygous transgenic tobacco plants withagrobacterium<br>tumefaciens: A seed-to-seed protocol. Plant Molecular Biology Reporter, 1995, 13, 278-289.                  | 1.0      | 54         |
| 75 | DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Research, 1994, 22, 4969-4978.                                                                                               | 6.5      | 64         |
| 76 | Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Molecular Biology, 1994, 26, 1041-1053.                                       | 2.0      | 21         |
| 77 | Hypocotyl expression and light downregulation of the soybean tubulin gene, tubB1. Plant Journal, 1994, 5, 343-351.                                                                                   | 2.8      | 22         |
| 78 | The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Molecular Biology, 1993, 21, 259-266.                                               | 2.0      | 130        |
| 79 | ABA-regulated gene expression: <i>cis</i> -acting sequences and <i>trans</i> -acting factors.<br>Biochemical Society Transactions, 1992, 20, 93-97.                                                  | 1.6      | 19         |
| 80 | High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes. Plant<br>Molecular Biology, 1991, 16, 95-104.                                                                  | 2.0      | 94         |
| 81 | Light Regulation of β-Tubulin Gene Expression during Internode Development in Soybean (Clycine max) Tj ETQq1                                                                                         | 1_0,7843 | 14.rgBT /O |
| 82 | Regulation of b-Glucuronidase Expression in Transgenic Tobacco Plants by an A/T-Rich, cis-Acting<br>Sequence Found Upstream of a French Bean b-Phaseolin Gene. Plant Cell, 1989, 1, 839.             | 3.1      | 114        |
| 83 | Carrot (Daucus carota) hypocotyl transformation usingAgrobacterium tumefaciens. Plant Cell<br>Reports, 1989, 8, 354-357.                                                                             | 2.8      | 43         |
| 84 | Expression of DNA binding proteins in carrot somatic embryos that specifically interact with a cis regulatory element of the French bean phaseolin gene. Plant Molecular Biology, 1989, 13, 605-610. | 2.0      | 7          |
| 85 | The expression of a chimeric soybean beta-tubulin gene in tobacco. Molecular Genetics and Genomics, 1987, 207, 328-334.                                                                              | 2.4      | 12         |

The isolation, characterization and sequence of two divergent ?-tubulin genes from soybean (Clycine) Tj ETQq0 0 0.rgBT /Overlock 10 Tf