Chandra A Reynolds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Genes and Environments for Explaining Alzheimer Disease. Archives of General Psychiatry, 2006, 63, 168.	12.3	1,423
2	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 2018, 50, 912-919.	21.4	893
3	Age-related differences and change in positive and negative affect over 23 years Journal of Personality and Social Psychology, 2001, 80, 136-151.	2.8	858
4	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
5	A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. Nature Genetics, 2021, 53, 1276-1282.	21.4	430
6	Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 1077-1083.	2.6	245
7	Age changes in processing speed as a leading indicator of cognitive aging Psychology and Aging, 2007, 22, 558-568.	1.6	223
8	Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nature Communications, 2020, 11, 3519.	12.8	213
9	Comparing Within- and Between-Family Polygenic Score Prediction. American Journal of Human Genetics, 2019, 105, 351-363.	6.2	190
10	Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. ELife, 2020, 9, .	6.0	177
11	Early educational and health enrichment at age 3-5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: Evidence from the Mauritius Child Health Project. Psychophysiology, 2001, 38, 254-266.	2.4	158
12	Personality predicts mortality risk: An integrative data analysis of 15 international longitudinal studies. Journal of Research in Personality, 2017, 70, 174-186.	1.7	155
13	Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiology of Aging, 2005, 26, 439-447.	3.1	152
14	Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nature Genetics, 2022, 54, 581-592.	21.4	142
15	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
16	Latent growth curve analyses of accelerating decline in cognitive abilities in late adulthood Developmental Psychology, 2003, 39, 535-550.	1.6	139
17	Genetics of educational attainment in Australian twins: Sex differences and secular changes. Behavior Genetics, 1996, 26, 89-102.	2.1	129
18	Quantitative Genetic Analysis of Latent Growth Curve Models of Cognitive Abilities in Adulthood Developmental Psychology, 2005, 41, 3-16.	1.6	125

#	Article	IF	CITATIONS
19	Cognitive engagement and cognitive aging: Is openness protective?. Psychology and Aging, 2010, 25, 60-73.	1.6	112
20	Telomere Length Shortening and Alzheimer Disease—A Mendelian Randomization Study. JAMA Neurology, 2015, 72, 1202.	9.0	107
21	The Longitudinal Relationship between Processing Speed and Cognitive Ability: Genetic and Environmental Influences. Behavior Genetics, 2005, 35, 535-549.	2.1	105
22	An Empirical Test of Telephone Screening to Identify Potential Dementia Cases. International Psychogeriatrics, 1995, 7, 429-438.	1.0	102
23	Influence of young adult cognitive ability and additional education on later-life cognition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2021-2026.	7.1	100
24	Grip Strength and Cognitive Abilities: Associations in Old Age. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2016, 71, 841-848.	3.9	94
25	Use of an Alzheimer's disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Molecular Psychiatry, 2019, 24, 421-430.	7.9	93
26	A Cross-National Self-Report Measure of Depressive Symptomatology. International Psychogeriatrics, 1993, 5, 147-156.	1.0	92
27	Serum Lipid Levels and Cognitive Change in Late Life. Journal of the American Geriatrics Society, 2010, 58, 501-509.	2.6	92
28	Factors associated with grip strength decline in older adults. Age and Ageing, 2015, 44, 269-274.	1.6	92
29	Stability and change in adult personality: genetic and environmental components. European Journal of Personality, 1998, 12, 365-386.	3.1	75
30	Exploring the Causal Pathway From Telomere Length to Coronary Heart Disease. Circulation Research, 2017, 121, 214-219.	4.5	74
31	Anxiety is associated with increased risk of dementia in older Swedish twins. Alzheimer's and Dementia, 2016, 12, 399-406.	0.8	70
32	Cohort Differences in Trajectories of Cognitive Aging. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2007, 62, P286-P294.	3.9	67
33	Sources of Influence on Rate of Cognitive Change Over Time in Swedish Twins: An Application of Latent Growth Models. Experimental Aging Research, 2002, 28, 407-433.	1.2	66
34	Underdiagnosis of mild cognitive impairment: A consequence of ignoring practice effects. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 372-381.	2.4	54
35	Multivariate models of mixed assortment: phenotypic assortment and social homogamy for education and fluid ability. Behavior Genetics, 2000, 30, 455-476.	2.1	52
36	Alcohol, Tobacco and Caffeine Use: Spouse Similarity Processes. Behavior Genetics, 2006, 36, 201-215.	2.1	52

#	Article	IF	CITATIONS
37	A longitudinal twin study of general cognitive ability over four decades Developmental Psychology, 2017, 53, 1170-1177.	1.6	49
38	Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities Developmental Psychology, 2014, 50, 152-166.	1.6	48
39	Analysis of lipid pathway genes indicates association of sequence variation near SREBF1/TOM1L2/ATPAF2 with dementia risk. Human Molecular Genetics, 2010, 19, 2068-2078.	2.9	45
40	Longitudinal decline of leukocyte telomere length in old age and the association with sex and genetic risk. Aging, 2016, 8, 1398-1415.	3.1	45
41	A Meta-analysis of Heritability of Cognitive Aging: Minding the "Missing Heritability―Gap. Neuropsychology Review, 2015, 25, 97-112.	4.9	44
42	The association between intelligence and lifespan is mostly genetic. International Journal of Epidemiology, 2016, 45, 178-185.	1.9	42
43	Two definitions of waiting well Emotion, 2016, 16, 129-143.	1.8	42
44	Integrating verbal fluency with executive functions: Evidence from twin studies in adolescence and middle age Journal of Experimental Psychology: General, 2019, 148, 2104-2119.	2.1	42
45	Towards compendia of negative genetic association studies: an example for Alzheimer disease. Human Genetics, 2006, 119, 29-37.	3.8	41
46	MRIâ€assessed locus coeruleus integrity is heritable and associated with multiple cognitive domains, mild cognitive impairment, and daytime dysfunction. Alzheimer's and Dementia, 2021, 17, 1017-1025.	0.8	41
47	Longitudinal change in memory performance associated with HTR2A polymorphism. Neurobiology of Aging, 2006, 27, 150-154.	3.1	40
48	Temporal dynamics of cognitive performance and anxiety across older adulthood Psychology and Aging, 2017, 32, 278-292.	1.6	40
49	Genetic and environmental architecture of executive functions in midlife Neuropsychology, 2018, 32, 18-30.	1.3	38
50	Genetic and environmental influences on decline in biobehavioral markers of aging. Behavior Genetics, 2003, 33, 107-123.	2.1	37
51	A survey of ABCA1 sequence variation confirms association with dementia. Human Mutation, 2009, 30, 1348-1354.	2.5	37
52	Genetic variance in processing speed drives variation in aging of spatial and memory abilities Developmental Psychology, 2009, 45, 820-834.	1.6	37
53	Longitudinal Memory Performance During Normal Aging: Twin Association Models of APOE and Other Alzheimer Candidate Genes. Behavior Genetics, 2006, 36, 185-194.	2.1	36
54	Influence of Negative Life Events and Widowhood on Risk for Dementia. American Journal of Geriatric Psychiatry, 2017, 25, 766-778.	1.2	35

#	Article	IF	CITATIONS
55	IGEMS: The Consortium on Interplay of Genes and Environment Across Multiple Studies. Twin Research and Human Genetics, 2013, 16, 481-489.	0.6	34
56	Both odor identification and ApoE-Îμ4 contribute to normative cognitive aging Psychology and Aging, 2011, 26, 872-883.	1.6	33
57	Models of spouse similarity: Applications to fluid ability measured in twins and their spouses. Behavior Genetics, 1996, 26, 73-88.	2.1	32
58	Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiology of Aging, 2018, 69, 111-116.	3.1	32
59	Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 2021, 11, 413.	4.8	31
60	Drivers of Frailty from Adulthood into Old Age: Results from a 27-Year Longitudinal Population-Based Study in Sweden. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1943-1950.	3.6	30
61	Surprising Lack of Sex Differences in Normal Cognitive Aging in Twins. International Journal of Aging and Human Development, 2006, 62, 335-357.	1.6	29
62	Dementia in Swedish Twins: Predicting Incident Cases. Behavior Genetics, 2010, 40, 768-775.	2.1	29
63	Sortilin receptor 1 predicts longitudinal cognitive change. Neurobiology of Aging, 2013, 34, 1710.e11-1710.e18.	3.1	29
64	A decade of epigenetic change in aging twins: Genetic and environmental contributions to longitudinal DNA methylation. Aging Cell, 2020, 19, e13197.	6.7	29
65	Childhood social class and cognitive aging in the Swedish Adoption/Twin Study of Aging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7001-7006.	7.1	28
66	Stability of genetic and environmental influences on executive functions in midlife Psychology and Aging, 2018, 33, 219-231.	1.6	28
67	Genotype–Environment Interactions: Cognitive Aging and Social Factors. Twin Research and Human Genetics, 2007, 10, 241-254.	0.6	27
68	Apolipoprotein E ε4 genotype and the temporal relationship between depression and dementia. Neurobiology of Aging, 2015, 36, 1751-1756.	3.1	27
69	Longitudinal changes in the genetic and environmental influences on the epigenetic clocks across old age: Evidence from two twin cohorts. EBioMedicine, 2019, 40, 710-716.	6.1	27
70	Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins. Brain Communications, 2022, 4, fcab308.	3.3	27
71	Data Harmonization in Aging Research: Not so Fast. Experimental Aging Research, 2015, 41, 475-495.	1.2	26
72	Genome-wide Association Meta-analysis of Childhood and Adolescent Internalizing Symptoms. Journal of the American Academy of Child and Adolescent Psychiatry, 2022, 61, 934-945.	0.5	26

#	Article	IF	CITATIONS
73	Body mass trajectories and cortical thickness in middle-aged men: a 42-year longitudinal study starting in young adulthood. Neurobiology of Aging, 2019, 79, 11-21.	3.1	25
74	Sequence variation in SORL1 and dementia risk in Swedes. Neurogenetics, 2010, 11, 139-142.	1.4	24
75	Pupillary dilation responses as a midlife indicator of risk for Alzheimer's disease: association with Alzheimer's disease polygenic risk. Neurobiology of Aging, 2019, 83, 114-121.	3.1	24
76	Pleiotropy in the Presence of Allelic Heterogeneity: Alternative Genetic Models for the Influence of APOE on Serum LDL, CSF Amyloid-β42, and Dementia. Journal of Alzheimer's Disease, 2010, 22, 129-134.	2.6	23
77	Mediators of the Effect of Childhood Socioeconomic Status on Late Midlife Cognitive Abilities: A Four Decade Longitudinal Study. Innovation in Aging, 2018, 2, .	0.1	23
78	How do student and classroom characteristics affect attitude toward mathematics? A multivariate multilevel analysis. School Effectiveness and School Improvement, 2017, 28, 1-21.	2.9	22
79	Factors associated with hospitalization risk among community living middle aged and older persons: Results from the Swedish Adoption/Twin Study of Aging (SATSA). Archives of Gerontology and Geriatrics, 2016, 66, 102-108.	3.0	21
80	Age-dependent effects of body mass index across the adult life span on the risk of dementia: a cohort study with a genetic approach. BMC Medicine, 2020, 18, 131.	5.5	21
81	The Colorado Twin Registry: 2019 Update. Twin Research and Human Genetics, 2019, 22, 707-715.	0.6	20
82	The influence of mortality on twin models of change: addressing missingness through multiple imputation. Behavior Genetics, 2003, 33, 161-169.	2.1	19
83	Attained SES as a moderator of adult cognitive performance: Testing gene–environment interaction in various cognitive domains Developmental Psychology, 2018, 54, 2356-2370.	1.6	19
84	Leukocyte Telomere Length and All-Cause Mortality: A Between-Within Twin Study With Time-Dependent Effects Using Generalized Survival Models. American Journal of Epidemiology, 2018, 187, 2186-2191.	3.4	18
85	The unique effects of maternal and paternal depressive symptoms on youth's symptomatology: Moderation by family ethnicity, family structure, and child gender. Development and Psychopathology, 2019, 31, 1213-1226.	2.3	17
86	The dynamic association between body mass index and cognition from midlife through late-life, and the effect of sex and genetic influences. Scientific Reports, 2021, 11, 7206.	3.3	17
87	A coordinated analysis of the associations among personality traits, cognitive decline, and dementia in older adulthood. Journal of Research in Personality, 2021, 92, 104100.	1.7	17
88	Genetic and Environmental Variation in Lung Function Drives Subsequent Variation in Aging of Fluid Intelligence. Behavior Genetics, 2013, 43, 274-285.	2.1	16
89	Associations between depression and cardiometabolic health: A 27-year longitudinal study. Psychological Medicine, 2022, 52, 3007-3017.	4.5	16
90	Genetic and Environmental Associations Among Executive Functions, Trait Anxiety, and Depression Symptoms in Middle Age. Clinical Psychological Science, 2019, 7, 127-142.	4.0	15

#	Article	IF	CITATIONS
91	Early educational and health enrichment at age 3–5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: Evidence from the Mauritius Child Health Project. Psychophysiology, 2001, 38, 254-266.	2.4	15
92	Gene–Environment Interplay in Physical, Psychological, and Cognitive Domains in Mid to Late Adulthood: Is APOE a Variability Gene?. Behavior Genetics, 2016, 46, 4-19.	2.1	14
93	Steeper change in body mass across four decades predicts poorer cardiometabolic outcomes at midlife. Obesity, 2017, 25, 773-780.	3.0	14
94	IGEMS: The Consortium on Interplay of Genes and Environment Across Multiple Studies — An Update. Twin Research and Human Genetics, 2019, 22, 809-816.	0.6	14
95	APOE effects on cognition from childhood to adolescence. Neurobiology of Aging, 2019, 84, 239.e1-239.e8.	3.1	14
96	Individual variation for cognitive decline: quantitative methods for describing patterns of change. Psychology and Aging, 2002, 17, 271-87.	1.6	14
97	Age-moderation of genetic and environmental contributions to cognitive functioning in mid- and late-life for specific cognitive abilities. Intelligence, 2018, 68, 70-81.	3.0	13
98	Genetic and Environmental Influences on Verbal Fluency in Middle Age: A Longitudinal Twin Study. Behavior Genetics, 2018, 48, 361-373.	2.1	13
99	Data Harmonization: Establishing Measurement Invariance across Different Assessments of the Same Construct across Adolescence. Journal of Clinical Child and Adolescent Psychology, 2019, 48, 555-567.	3.4	13
100	Heritability of an Age-Dependent Categorical Phenotype: Cognitive Dysfunction. Twin Research and Human Genetics, 2006, 9, 17-23.	0.6	12
101	Association of baseline semantic fluency and progression to mild cognitive impairment in middle-aged men. Neurology, 2020, 95, e973-e983.	1.1	12
102	Stability and change in adult personality: genetic and environmental components. European Journal of Personality, 1998, 12, 365-386.	3.1	12
103	Genetic associations between executive functions and intelligence: A combined twin and adoption study Journal of Experimental Psychology: General, 2022, 151, 1745-1761.	2.1	12
104	G×E Interaction Influences Trajectories of Hand Grip Strength. Behavior Genetics, 2016, 46, 20-30.	2.1	11
105	The role of neighborhood stressors on cognitive function: A coordinated analysis. Health and Place, 2020, 66, 102442.	3.3	11
106	Sex differences in genetic and environmental influences on frailty and its relation to body mass index and education. Aging, 2021, 13, 16990-17023.	3.1	11
107	Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age. Neurobiology of Aging, 2021, 108, 80-89.	3.1	11
108	Childhood sleep duration and lifelong mortality risk Health Psychology, 2014, 33, 1195-1203.	1.6	10

#	Article	IF	CITATIONS
109	Age differences and longitudinal change in the effects of data collection mode on self-reports of psychosocial functioning Psychology and Aging, 2015, 30, 106-119.	1.6	10
110	Stability of Genetic and Environmental Contributions to Anxiety Symptoms in Older Adulthood. Behavior Genetics, 2016, 46, 492-505.	2.1	10
111	A Twin Study of Sex Differences in Genetic Risk for All Dementia, Alzheimer's Disease (AD), and Non-AD Dementia. Journal of Alzheimer's Disease, 2020, 76, 539-551.	2.6	10
112	Heritability of an Age-Dependent Categorical Phenotype: Cognitive Dysfunction. Twin Research and Human Genetics, 2006, 9, 17-23.	0.6	10
113	Moderate Alcohol Use Is Associated with Reduced Cardiovascular Risk in Middle-Aged Men Independent of Health, Behavior, Psychosocial, and Earlier Life Factors. Nutrients, 2022, 14, 2183.	4.1	10
114	CATSLife: A Study of Lifespan Behavioral Development and Cognitive Functioning. Twin Research and Human Genetics, 2019, 22, 695-706.	0.6	9
115	Musical instrument engagement in adolescence predicts verbal ability 4 years later: A twin and adoption study Developmental Psychology, 2021, 57, 1943-1957.	1.6	9
116	Dementia risk in women higher in sameâ€sex than oppositeâ€sex twins. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12049.	2.4	8
117	Longâ€ŧerm associations of cigarette smoking in early midâ€life with predicted brain aging from mid―to late life. Addiction, 2022, 117, 1049-1059.	3.3	8
118	Alzheimer's Disease Polygenic Scores Predict Changes in Episodic Memory and Executive Function Across 12 Years in Late Middle Age. Journal of the International Neuropsychological Society, 2023, 29, 136-147.	1.8	8
119	Behavioral Genetic Investigations of Cognitive Aging. , 2009, , 101-112.		7
120	Understanding The Role of Mate Selection Processes in Couples' Pair-Bonding Behavior. Behavior Genetics, 2016, 46, 143-149.	2.1	7
121	Cognitive trajectories in relation to hospitalization among older Swedish adults. Archives of Gerontology and Geriatrics, 2018, 74, 9-14.	3.0	7
122	Genetic risk for coronary heart disease alters the influence of Alzheimer's genetic risk on mild cognitive impairment. Neurobiology of Aging, 2019, 84, 237.e5-237.e12.	3.1	7
123	Longitudinal Twin Study of Subjective Health: Differences in Genetic and Environmental Components of Variance Across Age and Sex. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2020, 75, 1-10.	3.9	7
124	12-year prediction of mild cognitive impairment aided by Alzheimer's brain signatures at mean age 56. Brain Communications, 2021, 3, fcab167.	3.3	7
125	Genetic and environmental architecture of processing speed across midlife Neuropsychology, 2019, 33, 862-871.	1.3	7
126	Longitudinal analyses indicate bidirectional associations between loneliness and health. Aging and Mental Health, 2023, 27, 1217-1225.	2.8	7

#	Article	IF	CITATIONS
127	Etiology of Individual Differences in Human Health and Longevity. Annual Review of Gerontology and Geriatrics, 2014, 34, 189-227.	0.5	6
128	Motor functioning differentially predicts mortality in men and women. Archives of Gerontology and Geriatrics, 2017, 72, 6-11.	3.0	6
129	Replicating associations between DNA methylation and body mass index in a longitudinal sample of older twins. International Journal of Obesity, 2020, 44, 1397-1405.	3.4	6
130	The epigenetic etiology of cardiovascular disease in a longitudinal Swedish twin study. Clinical Epigenetics, 2021, 13, 129.	4.1	6
131	How Well Does Subjective Cognitive Decline Correspond to Objectively Measured Cognitive Decline? Assessment of 10–12 Year Change. Journal of Alzheimer's Disease, 2021, 83, 291-304.	2.6	6
132	Examining the influence of perceived stress on developmental change in memory and perceptual speed for adopted and nonadopted individuals Developmental Psychology, 2018, 54, 138-150.	1.6	5
133	An assessment of CETP sequence variation in relation to cognitive decline and dementia risk. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 122-9.	0.4	5
134	The effects of cannabis use on physical health: A co-twin control study. Drug and Alcohol Dependence, 2022, 230, 109200.	3.2	5
135	Predicting Health-Related Quality of Life in Trauma-Exposed Male Veterans in Late Midlife: A 20 Year Longitudinal Study. International Journal of Environmental Research and Public Health, 2020, 17, 4554.	2.6	4
136	Genetic and Environmental Influences on Semantic Verbal Fluency Across Midlife and Later Life. Behavior Genetics, 2021, 51, 99-109.	2.1	4
137	HeritabilityÂ×ÂSES Interaction for IQ: Is it Present in US Adoption Studies?. Behavior Genetics, 2022, 52, 48-55.	2.1	4
138	Temporal relationship between attitude toward mathematics and mathematics achievement. International Journal of Mathematical Education in Science and Technology, 2022, 53, 1546-1570.	1.4	3
139	Gene by Environment Interplay in Cognitive Aging. , 2014, , 169-199.		3
140	Openness declines in advance of death in late adulthood Psychology and Aging, 2019, 34, 124-138.	1.6	3
141	The Impact of Genes and Environment on Brain Ageing in Males Aged 51 to 72 Years. Frontiers in Aging Neuroscience, 2022, 14, 831002.	3.4	3
142	Comparative Rating Measures of Health and Environmental Exposures: How Well Do Twins Agree?. Twin Research and Human Genetics, 2005, 8, 113-119.	0.6	2
143	Cognitive and Physical Aging. , 2016, , 125-146.		2
144	Paradoxical cognitive trajectories in men from earlier to later adulthood. Neurobiology of Aging, 2021, 109, 229-238.	3.1	2

#	Article	IF	CITATIONS
145	Temperament, childhood illness burden, and illness behavior in early adulthood Health Psychology, 2019, 38, 648-657.	1.6	2
146	Comparative Rating Measures of Health and Environmental Exposures: How Well Do Twins Agree?. Twin Research and Human Genetics, 2005, 8, 113-119.	0.6	2
147	Personality predictors of cognitive dispersion: A coordinated analysis of data from seven international studies of older adults Neuropsychology, 2022, 36, 103-115.	1.3	1
148	Independent and joint effects of body mass index and metabolic health in mid- and late-life on all-cause mortality: a cohort study from the Swedish Twin Registry with a mean follow-up of 13 Years. BMC Public Health, 2022, 22, 718.	2.9	1
149	Alcohol use and cognitive aging in middle-aged men: The Vietnam Era Twin Study of Aging. Journal of the International Neuropsychological Society, 2023, 29, 235-245.	1.8	1
150	Guest Editorial: Advances in Statistical Models and Methods. Twin Research and Human Genetics, 2006, 9, 311-312.	0.6	0
151	Authors' Response to Kaufman and Muntaner. International Journal of Epidemiology, 2016, 45, 578-579.	1.9	0
152	Epigenome-wide association study of level and change in cognitive abilities from midlife through late life. Clinical Epigenetics, 2021, 13, 85.	4.1	0
153	Does sleep duration moderate genetic and environmental contributions to cognitive performance?. Sleep, 0, , .	1.1	0
154	Genetic and environmental influences on structural- and diffusion-based Alzheimer's disease neuroimaging signatures across midlife and early old age. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, , .	1.5	0