Xiaohong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189746/publications.pdf

Version: 2024-02-01

40 papers 1,509 citations

331670 21 h-index 302126 39 g-index

40 all docs 40 docs citations

times ranked

40

2234 citing authors

#	Article	IF	CITATIONS
1	Synergetic effect of organic metal compound modified SnO2 in high performance perovskite solar cells. Solar Energy, 2022, 234, 170-178.	6.1	8
2	Azadipyrromethene Dye-Assisted Defect Passivation for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Solar Cells. 4, 14388-14399.	8.0	15
3	Enhanced Efficiency and Stability of NiOx-Based Perovskite Solar Cells Using [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl-Doped Poly(9-vinylcarbazole)-Modified Layer. ACS Applied Energy Materials, 2021, 4, 3812-3821.	5.1	10
4	Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24747-24755.	8.0	22
5	Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors. Journal of Materials Science, 2021, 56, 14207-14221.	3.7	11
6	Efficient and stable perovskite solar cells via organic surfactant interfacial passivation. Solar Energy, 2021, 227, 438-446.	6.1	2
7	High Efficiency and Stability of Inverted Perovskite Solar Cells Using Phenethyl Ammonium Iodide-Modified Interface of NiO _x and Perovskite Layers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 771-779.	8.0	76
8	Boosted field emission properties and thickness effect of conductive polymers coated silicon carbide matrices for vacuum electronic devices. Vacuum, 2020, 180, 109594.	3.5	10
9	Facile Fabrication and High Field Emission Performance of 2-D Tiâ, fCâ,,T <i>à, "</i> MXene Nanosheets for Vacuum Electronic Devices. IEEE Transactions on Electron Devices, 2020, 67, 5138-5143.	3.0	10
10	Synergetic Effect of Plasmonic Gold Nanorods and MgO for Perovskite Solar Cells. Nanomaterials, 2020, 10, 1830.	4.1	13
11	Efficient and stable mesoporous perovskite solar cells using p-type poly (9-vinylcarbazole) modified the interface of perovskite/mesoporous TiO2 layers. Organic Electronics, 2020, 82, 105737.	2.6	15
12	High performance perovskite solar cells using Cu9S5 supraparticles incorporated hole transport layers. Nanotechnology, 2019, 30, 445401.	2.6	9
13	Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles. Solar Energy, 2019, 188, 839-848.	6.1	23
14	Enhanced efficiency and thermal stability of perovskite solar cells using poly(9-vinylcarbazole) modified perovskite/PCBM interface. Electrochimica Acta, 2019, 318, 384-391.	5.2	29
15	Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods. Journal of Materials Science: Materials in Electronics, 2019, 30, 11043-11053.	2.2	5
16	Highly bright Li(Gd,Y)F4:Yb,Er upconverting nanocrystals incorporated hole transport layer for efficient perovskite solar cells. Applied Surface Science, 2019, 485, 332-341.	6.1	31
17	Crack-Assisted Field Emission Enhancement of Carbon Nanotube Films for Vacuum Electronics. ACS Applied Nano Materials, 2019, 2, 7803-7809.	5.0	22
18	Efficient and ultraviolet durable planar perovskite solar cells <i>via</i> a ferrocenecarboxylic acid modified nickel oxide hole transport layer. Nanoscale, 2018, 10, 5617-5625.	5.6	109

#	Article	IF	CITATIONS
19	Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Solar Energy, 2018, 169, 128-135.	6.1	51
20	Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Solar Energy, 2018, 174, 1133-1141.	6.1	75
21	Plasmon-enhanced perovskite solar cells using ultra-thin LiF spacer isolating AgAl and Au composite nanoparticles from metal electrode. Organic Electronics, 2018, 59, 272-278.	2.6	15
22	Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochimica Acta, 2018, 283, 1134-1145.	5.2	13
23	Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide. Nanoscale, 2017, 9, 2852-2864.	5.6	59
24	Enhanced Efficiency and stability of Perovskite Solar Cells using Porous Hierarchical TiO 2 Nanostructures of Scattered Distribution as Scaffold. Electrochimica Acta, 2017, 236, 351-358.	5.2	40
25	Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer. Nano-Micro Letters, 2017, 9, 39.	27.0	122
26	Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells. ACS Applied Materials & Distribution (2017), 9, 34821-34832.	8.0	100
27	Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains. ACS Applied Materials & Construction (2017), 9, 35200-35208.	8.0	137
28	Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration. Journal Physics D: Applied Physics, 2017, 50, 395304.	2.8	18
29	Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution. Chemical Engineering Journal, 2017, 330, 947-955.	12.7	43
30	Outstanding field emission properties of titanium dioxide /carbon nanotube composite cathodes on 3D nickel foam. Journal of Alloys and Compounds, 2017, 726, 675-679.	5.5	30
31	Effective Improvement of the Photovoltaic Performance of Carbon-Based Perovskite Solar Cells by Additional Solvents. Nano-Micro Letters, 2016, 8, 347-357.	27.0	68
32	Improved Performance of Polymer Solar Cells by Thermal Evaporation of AgAl Alloy Nanostructures into the Hole-Transport Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26098-26104.	8.0	21
33	Efficient and ultraviolet durable inverted polymer solar cells using thermal stable GZO-AgTi-GZO multilayers as a transparent electrode. Organic Electronics, 2016, 39, 177-183.	2.6	12
34	High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Solar Energy Materials and Solar Cells, 2016, 149, 121-127.	6.2	69
35	Highly Efficient and Air Stable Inverted Polymer Solar Cells Using LiF-Modified ITO Cathode and MoO ₃ /AgAl Alloy Anode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3792-3799.	8.0	45
36	Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Solar Energy Materials and Solar Cells, 2016, 146, 35-43.	6.2	76

XIAOHONG CHEN

#	Article	IF	CITATION
37	Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices. Applied Physics Letters, 2015, 106, .	3.3	29
38	Large enhancements of NaYF4:Yb/Er/Gd nanorod upconversion emissions via coupling with localized surface plasmon of Au film. Nanotechnology, 2014, 25, 185401.	2.6	44
39	Magnetic Tunnel Junction Based on MgO Barrier Prepared by Natural Oxidation and Direct Sputtering Deposition. Nano-Micro Letters, 2012, 4, 25-29.	27.0	13
40	Carrier transport assisted by dopants in doped poly(N-vinylcarbozole) light-emitting diodes. Journal Physics D: Applied Physics, 2004, 37, 1007-1011.	2.8	9