
Takamasa Tsukamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Accurate Synthesis of Quasiâ€subâ€nanoparticles by Dendronâ€assembled Supramolecular Templates. Angewandte Chemie - International Edition, 2022, , .	13.8	2
2	Innentitelbild: Highly Accurate Synthesis of Quasiâ€subâ€nanoparticles by Dendronâ€assembled Supramolecular Templates (Angew. Chem. 8/2022). Angewandte Chemie, 2022, 134, .	2.0	0
3	Poly-phenylene jacketed tailor-made dendritic phenylazomethine ligand for nanoparticle synthesis. Chemical Science, 2022, 13, 5813-5817.	7.4	3
4	Controlled Synthesis of Au25 Superatom Using a Dendrimer Template. Molecules, 2022, 27, 3398.	3.8	1
5	Equable Fine-tuning Techniques of Bimetallic Co-complexation in Dendrimer for Cluster Synthesis Covering a Wide Range of Composition. Chemistry Letters, 2022, 51, 848-850.	1.3	0
6	Modern cluster design based on experiment and theory. Nature Reviews Chemistry, 2021, 5, 338-347.	30.2	23
7	Expansion of Dendrimer Template Function for Subnanoparticle Synthesis. Chemistry Letters, 2021, 50, 1648-1651.	1.3	3
8	Unique Functions and Applications of Rigid Dendrimers Featuring Radial Aromatic Chains. Accounts of Chemical Research, 2021, 54, 4486-4497.	15.6	9
9	Electrochemical Measurement of Bismuth Clusters in Dendrimer Through Transformation from Atomicity Controlled Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 169-173.	3.7	3
10	Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1â€Nanometer Catalyst. Angewandte Chemie, 2020, 132, 23251-23255.	2.0	6
11	Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1â€Nanometer Catalyst. Angewandte Chemie - International Edition, 2020, 59, 23051-23055.	13.8	23
12	Quantum Materials Exploration by Sequential Screening Technique of Heteroatomicity. Journal of the American Chemical Society, 2020, 142, 19078-19084.	13.7	11
13	Superatomic Gallium Clusters in Dendrimers: Unique Rigidity and Reactivity Depending on their Atomicity. Advanced Materials, 2020, 32, e1907167.	21.0	8
14	Superatomic Clusters: Superatomic Gallium Clusters in Dendrimers: Unique Rigidity and Reactivity Depending on their Atomicity (Adv. Mater. 14/2020). Advanced Materials, 2020, 32, 2070096.	21.0	1
15	PeriodicityÂof molecular clusters based on symmetry-adapted orbital model. Nature Communications, 2019, 10, 3727.	12.8	25
16	Innentitelbild: Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles (Angew. Chem. 4/2019). Angewandte Chemie, 2019, 131, 932-932.	2.0	0
17	Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles. Angewandte Chemie, 2019, 131, 1014-1018.	2.0	11
18	Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles. Angewandte Chemie - International Edition, 2019, 58, 1002-1006	13.8	59

#	Article	IF	CITATIONS
19	Fluorescence Enhancement Behavior of Hemicyanine Derivatives on the Clay Nanosheets: Aggregation Induced Emission (AIE) vs. Surface-fixation Induced Emission (S-FIE). Chemistry Letters, 2018, 47, 636-639.	1.3	14
20	Active species transfer-type artificial light harvesting system in the nanosheet – Dye complexes: Utilization of longer wavelength region of sunlight. Tetrahedron Letters, 2018, 59, 528-531.	1.4	5
21	Artificial Photosynthesis Model: Photochemical Reaction System with Efficient Light-Harvesting Function on Inorganic Nanosheets. ACS Omega, 2018, 3, 18563-18571.	3.5	13
22	Atom-hybridization for synthesis of polymetallic clusters. Nature Communications, 2018, 9, 3873.	12.8	60
23	Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry. Nature Communications, 2018, 9, 3758.	12.8	9
24	A simple zinc(<scp>ii</scp>) complex that features multi-functional luminochromism induced by reversible ligand dissociation. Chemical Communications, 2017, 53, 3657-3660.	4.1	23
25	Unique fluorescence behavior of dyes on the clay minerals surface: Surface Fixation Induced Emission (S-FIE). Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 67-79.	3.9	48
26	Coordination Nanosheets Based on Terpyridine–Zinc(II) Complexes: As Photoactive Host Materials. Journal of the American Chemical Society, 2017, 139, 5359-5366.	13.7	104
27	Mechano-, thermo-, solvato-, and vapochromism in bis(acetato-l̂° ¹ 0)[4′-(4-(diphenylamino)phenyl)](2,2′:6′,2′′-terpyridine-l̂° ^{3and its polymer. Chemical Communications, 2017, 53, 9805-9808.}	p> ⋈, №â€²,	Nâ∰′)zino
28	Highly Selective Photochemical Epoxidation of Cyclohexene Sensitized by Ru(II) Porphyrin–Clay Hybrid Catalyst. Chemistry Letters, 2017, 46, 1311-1314.	1.3	17
29	Heteroleptic [Bis(oxazoline)](dipyrrinato)zinc(II) Complexes: Bright and Circularly Polarized Luminescence from an Originally Achiral Dipyrrinato Ligand. Angewandte Chemie - International Edition, 2016, 55, 1377-1381.	13.8	75
30	Photophysical Properties and Adsorption Behaviors of Novel Tri-Cationic Boron(III) Subporphyrin on Anionic Clay Surface. ACS Applied Materials & amp; Interfaces, 2016, 8, 7522-7528.	8.0	33
31	Heteroleptic [Bis(oxazoline)](dipyrrinato)zinc(II) Complexes: Bright and Circularly Polarized Luminescence from an Originally Achiral Dipyrrinato Ligand. Angewandte Chemie, 2016, 128, 1399-1403.	2.0	27
32	The coordination nanosheet (CONASH). Coordination Chemistry Reviews, 2016, 320-321, 118-128.	18.8	91
33	Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface. Langmuir, 2016, 32, 2920-2927.	3.5	35
34	Photochemical Chlorination and Oxygenation Reaction of Cyclohexene Sensitized by Ga(III) Porphyrin–Clay Minerals System with High Durability and Usability. Bulletin of the Chemical Society of Japan, 2015, 88, 578-583.	3.2	14
35	Structure resembling effect of clay surface on photochemical properties of meso-phenyl or pyridyl-substituted monocationic antimony(v) porphyrin derivatives. RSC Advances, 2015, 5, 8479-8485.	3.6	28
36	Pinning effect for photoisomerization of a dicationic azobenzene derivative by anionic sites of the clay surface. Chemical Communications, 2014, 50, 314-316.	4.1	23

#	Article	IF	CITATIONS
37	Microstructure and the Mobility of Fluorinated Carbon Chain of Reversed Micelles Formed by Cationic Polyfluorinated Surfactant. Bulletin of the Chemical Society of Japan, 2014, 87, 1273-1277.	3.2	3
38	Unique Photochemical Properties of <i>p</i> -Substituted Cationic Triphenylbenzene Derivatives on a Clay Layer Surface. Journal of Physical Chemistry C, 2013, 117, 2774-2779.	3.1	35
39	Photochemical Properties of Mono-, Tri-, and Penta-Cationic Antimony(V) Metalloporphyrin Derivatives on a Clay Layer Surface. Journal of Physical Chemistry A, 2013, 117, 7823-7832.	2.5	34
40	Functional Dye Materials Composed of Clay Nano-sheet. Journal of the Japan Society of Colour Material, 2013, 86, 198-203.	0.1	0
41	Adsorption and stacking behaviour of zwitterionic porphyrin on the clay surface. Clay Minerals, 2012, 47, 243-250.	0.6	4
42	Highly Accurate Synthesis of Quasiâ€subâ€nanoparticles by Dendronâ€assembled Supramolecular Templates. Angewandte Chemie, 0, , .	2.0	0