
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/718961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood–brain barrier permeable β-blockers linked to lower risk of Alzheimer's disease in hypertension. Brain, 2023, 146, 1141-1151.	7.6	30
2	Fluid transport in the brain. Physiological Reviews, 2022, 102, 1025-1151.	28.8	192
3	Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema. Brain, 2022, 145, 787-797.	7.6	23
4	Cerebral small vessel disease: A glymphopathy?. Current Opinion in Neurobiology, 2022, 72, 15-21.	4.2	41
5	The elusive varicose astrocytes. Trends in Neurosciences, 2022, 45, 94-95.	8.6	3
6	Perivascular pumping in the mouse brain: Improved boundary conditions reconcile theory, simulation, and experiment. Journal of Theoretical Biology, 2022, 542, 111103.	1.7	7
7	TUBE Project: Transport-Derived Ultrafines and the Brain Effects. International Journal of Environmental Research and Public Health, 2022, 19, 311.	2.6	1
8	"Diversity matters seriesâ€â€"The Black In Neuro movement. European Journal of Neuroscience, 2022, 55, 343-349.	2.6	0
9	A network model of glymphatic flow under different experimentally-motivated parametric scenarios. IScience, 2022, 25, 104258.	4.1	24
10	Does Long-Duration Exposure to Microgravity Lead to Dysregulation of the Brain and Ocular Glymphatic Systems?. Eye and Brain, 2022, Volume 14, 49-58.	2.5	8
11	Physiological Mechanisms and Significance of Intracranial B Waves. Frontiers in Neurology, 2022, 13, .	2.4	6
12	Increased interictal synchronicity of respiratory related brain pulsations in epilepsy. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1840-1853.	4.3	5
13	Oxidative Stress-Induced Damage to the Developing Hippocampus Is Mediated by GSK3β. Journal of Neuroscience, 2022, 42, 4812-4827.	3.6	11
14	The effect of long-duration spaceflight on perivascular spaces within the brain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
15	Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nature Neuroscience, 2022, 25, 1059-1070.	14.8	87
16	Locus coeruleus in memory formation and Alzheimer's disease. European Journal of Neuroscience, 2021, 54, 6948-6959.	2.6	24
17	Twists and turns of ocular glymphatic clearance – new study reveals surprising findings in glaucoma. Acta Ophthalmologica, 2021, 99, e283-e284.	1.1	12
18	Mapping of CSF transport using high spatiotemporal resolution dynamic contrastâ€enhanced MRI in mice: Effect of anesthesia. Magnetic Resonance in Medicine, 2021, 85, 3326-3342.	3.0	47

#	Article	IF	CITATIONS
19	Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. ELife, 2021, 10, .	6.0	46
20	Cardiovascular brain impulses in Alzheimer's disease. Brain, 2021, 144, 2214-2226.	7.6	38
21	Adrenergic inhibition facilitates normalization of extracellular potassium after cortical spreading depolarization. Scientific Reports, 2021, 11, 8150.	3.3	10
22	Inverse correlation of fluctuations of cerebral blood and water concentrations in humans. European Physical Journal Plus, 2021, 136, 1.	2.6	6
23	NMDA Receptor Expression by Retinal Ganglion Cells Is Not Required for Retinofugal Map Formation nor Eye-Specific Segregation in the Mouse. ENeuro, 2021, 8, ENEURO.0115-20.2021.	1.9	1
24	Reply to: Rethink the classical view of cerebrospinal fluid production. Nature Reviews Neurology, 2021, 17, 590-591.	10.1	1
25	The Glymphatic System (En)during Inflammation. International Journal of Molecular Sciences, 2021, 22, 7491.	4.1	70
26	Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2+/â^' Mutant Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 706079.	2.0	6
27	<scp>DNase</scp> Treatment Prevents <scp>Cerebrospinal Fluid</scp> Block in Early Experimental Pneumococcal Meningitis. Annals of Neurology, 2021, 90, 653-669.	5.3	11
28	The Glymphatic System: A Novel Component of Fundamental Neurobiology. Journal of Neuroscience, 2021, 41, 7698-7711.	3.6	105
29	The glymphatic system. Current Biology, 2021, 31, R1371-R1375.	3.9	34
30	Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature. International Journal of Molecular Sciences, 2021, 22, 11554.	4.1	11
31	When the air hits your brain: decreased arterial pulsatility after craniectomy leading to impaired glymphatic flow. Journal of Neurosurgery, 2020, 133, 210-223.	1.6	35
32	Astrocytic Endocannabinoids Mediate Hippocampal Transient Heterosynaptic Depression. Neurochemical Research, 2020, 45, 100-108.	3.3	18
33	Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry,the, 2020, 7, 272-281.	7.4	145
34	Cleaning the sleeping brain $\hat{a} \in$ " the potential restorative function of the glymphatic system. Current Opinion in Physiology, 2020, 15, 1-6.	1.8	64
35	Glymphatic failure as a final common pathway to dementia. Science, 2020, 370, 50-56.	12.6	435
36	Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice. Scientific Reports, 2020, 10, 16073.	3.3	25

#	Article	IF	CITATIONS
37	A three-dimensional, population-based average of the C57BL/6 mouse brain from DAPI-stained coronal slices. Scientific Data, 2020, 7, 235.	5.3	5
38	Surface periarterial spaces of the mouse brain are open, not porous. Journal of the Royal Society Interface, 2020, 17, 20200593.	3.4	30
39	Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications, 2020, 11, 4411.	12.8	296
40	Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathologica Communications, 2020, 8, 140.	5.2	19
41	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
42	The Glymphatic System and Pain. Medical Acupuncture, 2020, 32, 373-376.	0.6	11
43	The variability of functional MRI brain signal increases in Alzheimer's disease at cardiorespiratory frequencies. Scientific Reports, 2020, 10, 21559.	3.3	28
44	Haplotype of the astrocytic water channel AQP4 is associated with slow wave energy regulation in human NREM sleep. PLoS Biology, 2020, 18, e3000623.	5.6	39
45	The Brain's Glymphatic System: Current Controversies. Trends in Neurosciences, 2020, 43, 458-466.	8.6	319
46	Interstitial ions: A key regulator of state-dependent neural activity?. Progress in Neurobiology, 2020, 193, 101802.	5.7	60
47	Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Reports, 2020, 31, 107658.	6.4	27
48	Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nature Reviews Neurology, 2020, 16, 285-296.	10.1	107
49	Mechanisms of cognitive dysfunction in CKD. Nature Reviews Nephrology, 2020, 16, 452-469.	9.6	159
50	Respiratory-related brain pulsations are increased in epilepsy—a two-centre functional MRI study. Brain Communications, 2020, 2, fcaa076.	3.3	15
51	Perivascular spaces in the brain: anatomy, physiology and pathology. Nature Reviews Neurology, 2020, 16, 137-153.	10.1	405
52	Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System. Scientific Reports, 2020, 10, 1990.	3.3	75
53	Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. Journal of Neuroscience, 2020, 40, 2371-2380.	3.6	29
54	Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus. Trends in Molecular Medicine, 2020, 26, 285-295.	6.7	206

#	Article	IF	CITATIONS
55	Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 2020, 367, .	12.6	300
56	An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Science Translational Medicine, 2020, 12, .	12.4	116
57	Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Reports, 2020, 33, 108524.	6.4	66
58	In Vivo Imaging of Cerebrospinal Fluid Transport through the Intact Mouse Skull using Fluorescence Macroscopy. Journal of Visualized Experiments, 2019, , .	0.3	14
59	Astrocytic connexin 43 potentiates myelin injury in ischemic white matter disease. Theranostics, 2019, 9, 4474-4493.	10.0	21
60	Cortex-wide Changes in Extracellular Potassium Ions Parallel Brain State Transitions in Awake Behaving Mice. Cell Reports, 2019, 28, 1182-1194.e4.	6.4	53
61	Astrocytes in chronic pain and itch. Nature Reviews Neuroscience, 2019, 20, 667-685.	10.2	296
62	Brain Morphometry and Longitudinal Relaxation Time of Spontaneously Hypertensive Rats (SHRs) in Early and Intermediate Stages of Hypertension Investigated by 3D VFA-SPGR MRI. Neuroscience, 2019, 404, 14-26.	2.3	23
63	Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. Journal of Neuroscience, 2019, 39, 6365-6377.	3.6	131
64	Hydraulic resistance of periarterial spaces in the brain. Fluids and Barriers of the CNS, 2019, 16, 19.	5.0	68
65	Dysregulated Clial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Reports, 2019, 27, 3832-3843.e6.	6.4	32
66	Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas. Trends in Neurosciences, 2019, 42, 528-536.	8.6	48
67	Oxygen tension–mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia. Science Advances, 2019, 5, eaaw4466.	10.3	29
68	Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. Journal of Controlled Release, 2019, 304, 29-38.	9.9	73
69	Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11010-11019.	7.1	35
70	PDGF-B Is Required for Development of the Glymphatic System. Cell Reports, 2019, 26, 2955-2969.e3.	6.4	89
71	Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Science Advances, 2019, 5, eaav5447.	10.3	313
72	Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nature Neuroscience, 2019, 22, 317-327.	14.8	318

#	Article	IF	CITATIONS
73	Cisterna Magna Injection in Rats to Study Glymphatic Function. Methods in Molecular Biology, 2019, 1938, 97-104.	0.9	19
74	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.8	454
75	Editorial: Sleep and Mood Disorders. Frontiers in Psychiatry, 2019, 10, 981.	2.6	4
76	State-Dependent Changes in Brain Glycogen Metabolism. Advances in Neurobiology, 2019, 23, 269-309.	1.8	6
77	Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. Biomedical Optics Express, 2019, 10, 6242.	2.9	5
78	Fluorescent Ca ²⁺ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. Science Signaling, 2018, 11, .	3.6	81
79	Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Scientific Reports, 2018, 8, 2246.	3.3	72
80	Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovascular Research, 2018, 114, 1462-1473.	3.8	211
81	Quantitative Gdâ€DOTA uptake from cerebrospinal fluid into rat brain using 3D VFAâ€SPGR at 9.4T. Magnetic Resonance in Medicine, 2018, 79, 1568-1578.	3.0	83
82	Voluntary running enhances glymphatic influx in awake behaving, young mice. Neuroscience Letters, 2018, 662, 253-258.	2.1	80
83	The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 379-394.	22.4	519
84	Remembering Ben Barres. Neuroglia (Basel, Switzerland), 2018, 1, 4-6.	0.9	3
85	Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications, 2018, 9, 4878.	12.8	550
86	The glymphatic pathway in neurological disorders. Lancet Neurology, The, 2018, 17, 1016-1024.	10.2	831
87	Cannula Implantation into the Cisterna Magna of Rodents. Journal of Visualized Experiments, 2018, , .	0.3	65
88	Physiology of Astroglia. Physiological Reviews, 2018, 98, 239-389.	28.8	1,044
89	Cerebral Metabolic Changes During Sleep. Current Neurology and Neuroscience Reports, 2018, 18, 57.	4.2	68
90	Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight, 2018, 3, .	5.0	64

#	Article	IF	CITATIONS
91	Aquaporin-4-dependent glymphatic solute transport in the rodent brain. ELife, 2018, 7, .	6.0	365
92	Impairment of the glymphatic system after diabetes. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1326-1337.	4.3	194
93	Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?. Neurochemical Research, 2017, 42, 1810-1822.	3.3	29
94	Focal Solute Trapping and Global Glymphatic Pathway Impairment in a Murine Model of Multiple Microinfarcts. Journal of Neuroscience, 2017, 37, 2870-2877.	3.6	134
95	Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neurolmage, 2017, 152, 530-537.	4.2	57
96	SOX9 Is an Astrocyte-Specific Nuclear Marker in the Adult Brain Outside the Neurogenic Regions. Journal of Neuroscience, 2017, 37, 4493-4507.	3.6	263
97	Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET. Journal of Nuclear Medicine, 2017, 58, 1471-1476.	5.0	161
98	Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience, 2017, 343, 483-494.	2.3	46
99	Brain energetics during the sleep–wake cycle. Current Opinion in Neurobiology, 2017, 47, 65-72.	4.2	81
100	Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron, 2017, 96, 387-401.e6.	8.1	66
101	Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain?. Neurochemical Research, 2017, 42, 2577-2587.	3.3	18
102	Anesthesia with Dexmedetomidine and Low-dose Isoflurane Increases Solute Transport <i>via</i> the Glymphatic Pathway in Rat Brain When Compared with High-dose Isoflurane. Anesthesiology, 2017, 127, 976-988.	2.5	144
103	Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell, 2017, 21, 195-208.e6.	11.1	204
104	Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clinical Science, 2017, 131, 2257-2274.	4.3	226
105	Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2112-2124.	4.3	208
106	Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. Journal of Clinical Investigation, 2017, 127, 3210-3219.	8.2	436
107	The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150428.	4.0	89
108	Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Molecular Neurodegeneration, 2016, 11, 74.	10.8	168

#	Article	IF	CITATIONS
109	Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used. Scientific Reports, 2016, 6, 30433.	3.3	37
110	Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2016, 93, 215-225.	4.4	377
111	Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1537-1552.	4.3	26
112	Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science, 2016, 352, 550-555.	12.6	294
113	Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation. Neuron, 2016, 91, 851-862.	8.1	129
114	Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nature Communications, 2016, 7, 11758.	12.8	148
115	Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1074-1079.	7.1	306
116	Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1033-1045.	4.3	283
117	Glymphatic System. , 2016, , 1945-1962.		0
118	A Novel Model of Transient Occlusion of the Middle Cerebral Artery in Awake Mice. Journal of Nature and Science, 2016, 2, .	1.1	1
119	Modeling cognition and disease using human glial chimeric mice. Glia, 2015, 63, 1483-1493.	4.9	42
120	Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Frontiers in Cellular Neuroscience, 2015, 9, 37.	3.7	25
121	Filtering the muddied waters of brain edema. Trends in Neurosciences, 2015, 38, 333-335.	8.6	20
122	Optimal-mass-transfer-based estimation of glymphatic transport in living brain. , 2015, 9413, .		17
123	Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. Journal of Neuroscience, 2015, 35, 518-526.	3.6	391
124	Modern cerebrospinal fluid flow research and Heinrich Quincke's seminal 1872 article on the distribution of cinnabar in freely moving animals. Journal of Comparative Neurology, 2015, 523, 1748-1755.	1.6	13
125	The Effect of Body Posture on Brain Glymphatic Transport. Journal of Neuroscience, 2015, 35, 11034-11044.	3.6	283
126	Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 2015, 6, 6807.	12.8	279

#	Article	IF	CITATIONS
127	Why have we not yet developed a simple blood test for TBI?. Expert Review of Neurotherapeutics, 2015, 15, 465-468.	2.8	20
128	Distinct Functional States of Astrocytes During Sleep and Wakefulness: Is Norepinephrine the Master Regulator?. Current Sleep Medicine Reports, 2015, 1, 1-8.	1.4	56
129	The Glymphatic System: A Beginner's Guide. Neurochemical Research, 2015, 40, 2583-2599.	3.3	1,266
130	A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. Journal of Neuroscience, 2015, 35, 11848-11861.	3.6	179
131	Implications of the discovery of brain lymphatic pathways. Lancet Neurology, The, 2015, 14, 977-979.	10.2	149
132	Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 710-717.	0.8	461
133	How Do Astrocytes Participate in Neural Plasticity?. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020438.	5.5	113
134	Glymphatic System. , 2015, , 1-18.		2
135	Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. Journal of Neuroscience, 2014, 34, 16180-16193.	3.6	797
136	Neuronal Transgene Expression in Dominant-Negative SNARE Mice. Journal of Neuroscience, 2014, 34, 16594-16604.	3.6	129
137	Drowning stars: reassessing the role of astrocytes in brain edema. Trends in Neurosciences, 2014, 37, 620-628.	8.6	177
138	Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130593.	4.0	56
139	Astroglial cradle in the life of the synapse. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130595.	4.0	214
140	Imaging Activity in Neurons and Glia with a Polr2a-Based and Cre-Dependent GCaMP5G-IRES-tdTomato Reporter Mouse. Neuron, 2014, 83, 1058-1072.	8.1	120
141	Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease. Brain Research, 2014, 1582, 211-219.	2.2	14
142	Impairment of paravascular clearance pathways in the aging brain. Annals of Neurology, 2014, 76, 845-861.	5.3	964
143	A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. Journal of Neuroscience Methods, 2014, 229, 44-52.	2.5	18
144	Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain, 2014, 137, 2193-2209.	7.6	236

#	Article	IF	CITATIONS
145	The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. , 2014, 5, 184.		124
146	Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. Journal of Translational Medicine, 2013, 11, 107.	4.4	262
147	Garbage Truck of the Brain. Science, 2013, 340, 1529-1530.	12.6	526
148	Clia and pain: Is chronic pain a gliopathy?. Pain, 2013, 154, S10-S28.	4.2	868
149	Sleep Drives Metabolite Clearance from the Adult Brain. Science, 2013, 342, 373-377.	12.6	3,478
150	Cerebral Arterial Pulsation Drives Paravascular CSF–Interstitial Fluid Exchange in the Murine Brain. Journal of Neuroscience, 2013, 33, 18190-18199.	3.6	863
151	Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain. Science, 2013, 339, 197-200.	12.6	445
152	α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium, 2013, 54, 387-394.	2.4	340
153	Sustained Mobilization of Endogenous Neural Progenitors Delays Disease Progression in a Transgenic Model of Huntington's Disease. Cell Stem Cell, 2013, 12, 787-799.	11.1	56
154	â€~Hit & Run' Model of Closed-Skull Traumatic Brain Injury (TBI) Reveals Complex Patterns of Post-Traumatic AQP4 Dysregulation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 834-845.	4.3	240
155	The birth of the journal: the first anniversary of WIREs MTS. Environmental Sciences Europe, 2013, 2, 105-105.	5.5	0
156	Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Scientific Reports, 2013, 3, 2582.	3.3	152
157	Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. Journal of Clinical Investigation, 2013, 123, 1299-1309.	8.2	801
158	Random access multiphoton (RAMP) microscopy for investigation of cerebral blood flow regulation mechanisms. Proceedings of SPIE, 2012, 8226, .	0.8	0
159	Molecular scaffolds underpinning macroglial polarization: An analysis of retinal Müller cells and brain astrocytes in mouse. Glia, 2012, 60, 2018-2026.	4.9	36
160	Cognitive Deficits and Delayed Neuronal Loss in a Mouse Model of Multiple Microinfarcts. Journal of Neuroscience, 2012, 32, 17948-17960.	3.6	134
161	A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 2012, 4, 147ra111.	12.4	3,514
162	P2X receptors in neuroglia. Environmental Sciences Europe, 2012, 1, 151-161.	5.5	22

#	Article	IF	CITATIONS
163	Artifact versus reality—How astrocytes contribute to synaptic events. Glia, 2012, 60, 1013-1023.	4.9	274
164	Critical role of aquaporin-4 (AQP4) in astrocytic Ca ²⁺ signaling events elicited by cerebral edema. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 846-851.	7.1	243
165	Glial calcium and diseases of the nervous system. Cell Calcium, 2010, 47, 140-149.	2.4	151
166	Functions of Astrocytes and their Potential As Therapeutic Targets. Neurotherapeutics, 2010, 7, 338-353.	4.4	329
167	Uniquely Hominid Features of Adult Human Astrocytes. Journal of Neuroscience, 2009, 29, 3276-3287.	3.6	1,112
168	TR(I)Pping towards treatment for ischemia. Nature Neuroscience, 2009, 12, 1215-1216.	14.8	12
169	Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12489-12493.	7.1	375
170	Loss of Astrocytic Domain Organization in the Epileptic Brain. Journal of Neuroscience, 2008, 28, 3264-3276.	3.6	269
171	Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Developmental Biology, 2007, 302, 356-366.	2.0	158
172	The Transcriptome and Metabolic Gene Signature of Protoplasmic Astrocytes in the Adult Murine Cortex. Journal of Neuroscience, 2007, 27, 12255-12266.	3.6	420
173	Glial regulation of the cerebral microvasculature. Nature Neuroscience, 2007, 10, 1369-1376.	14.8	1,003
174	Astrocytic complexity distinguishes the human brain. Trends in Neurosciences, 2006, 29, 547-553.	8.6	590
175	Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience, 2006, 9, 260-267.	14.8	984
176	Role of glial cells in cerebral ischemia. Glia, 2005, 50, 281-286.	4.9	259
177	Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proceedings of the United States of America, 2005, 102, 16466-16471.	7.1	186
178	The blood–brain barrier: an overview. Neurobiology of Disease, 2004, 16, 1-13.	4.4	1,873
179	New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 2003, 26, 523-530.	8.6	1,135
180	Astrocyte-mediated control of cerebral microcirculation. Trends in Neurosciences, 2003, 26, 340-344.	8.6	163

#	Article	IF	CITATIONS
181	Signaling at the Gliovascular Interface. Journal of Neuroscience, 2003, 23, 9254-9262.	3.6	531
182	Astrocytes in ischemic stroke. , 2002, , 113-124.		2
183	Beyond the role of glutamate as a neurotransmitter. Nature Reviews Neuroscience, 2002, 3, 748-755.	10.2	385
184	Glutamate release promotes growth of malignant gliomas. Nature Medicine, 2001, 7, 1010-1015.	30.7	502
185	Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. , 2000, 59, 321-331.		168
186	Meningeal cells can communicate with astrocytes by calcium signaling. Annals of Neurology, 2000, 47, 18-25.	5.3	44
187	In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Medicine, 2000, 6, 271-277.	30.7	539
188	Pairedâ€pulse modulation at individual GABAergic synapses in rat hippocampus. Journal of Physiology, 2000, 523, 425-439.	2.9	58
189	Glucocorticoids?potent modulators of astrocytic calcium signaling. , 1999, 28, 1-12.		50
190	Gap-junction-mediated propagation and amplification of cell injury. Nature Neuroscience, 1998, 1, 494-500.	14.8	445
191	Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neuroscience, 1998, 1, 683-692.	14.8	773
192	Fibroblast growth factorâ€2/brainâ€derived neurotrophic factor—associated maturation of new neurons generated from adult human subependymal cells. Annals of Neurology, 1998, 43, 576-585.	5.3	259
193	Gap junctions are required for the propagation of spreading depression. Journal of Neurobiology, 1995, 28, 433-444.	3.6	174