
Hisashi Sawada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 277-288.	2.4	23
2	β-Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS Vascular Science, 2022, 3, 64-72.	1.1	11
3	Second Heart Field–Derived Cells Contribute to Angiotensin II–Mediated Ascending Aortopathies. Circulation, 2022, 145, 987-1001.	1.6	18
4	OUP accepted manuscript. Cardiovascular Research, 2022, 118, 1383-1384.	3.8	0
5	Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules, 2022, 12, 339.	4.0	6
6	Iron Deficiency Induces Heart Failure With Ectopic Cardiac Calcification in Mice With Metabolic Syndrome. Circulation: Heart Failure, 2022, 15, 101161CIRCHEARTFAILURE121009034.	3.9	0
7	Fludrocortisone Induces Aortic Pathologies in Mice. Biomolecules, 2022, 12, 825.	4.0	3
8	Expression of a PCSK9 Gain-of-Function Mutation in C57BL/6J Mice to Facilitate Angiotensin II-Induced AAAs. Biomolecules, 2022, 12, 915.	4.0	3
9	A mini-review on quantification of atherosclerosis in hypercholesterolemic mice. , 2022, 1, 1-6.		6
10	Exome-wide evaluation of rare coding variants using electronic health records identifies new gene–phenotype associations. Nature Medicine, 2021, 27, 66-72.	30.7	44
11	Single-cell transcriptomics as a building block for determining mechanistic insight of abdominal aortic aneurysm formation. Cardiovascular Research, 2021, 117, 1243-1244.	3.8	2
12	Ultrasound Monitoring of Thymus Involution in Septic Mice. Ultrasound in Medicine and Biology, 2021, 47, 769-776.	1.5	1
13	Effects of Endogenous Angiotensin II on Abdominal Aortic Aneurysms and Atherosclerosis in Angiotensin II–Infused Mice. Journal of the American Heart Association, 2021, 10, e020467.	3.7	3
14	Authentication of In Situ Measurements for Thoracic Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2117-2119.	2.4	7
15	Renal Angiotensinogen Is Predominantly Liver Derived in Nonhuman Primates. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2851-2853.	2.4	10
16	From unbiased transcriptomics to understanding the molecular basis of atherosclerosis. Current Opinion in Lipidology, 2021, 32, 328-329.	2.7	1
17	Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1 ^{C1041G/+} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2538-2550.	2.4	15
18	Megalin: A bridge connecting kidney, the renin-angiotensin system, and atherosclerosis. Pharmacological Research, 2020, 151, 104537.	7.1	12

HISASHI SAWADA

#	Article	IF	CITATIONS
19	Effects of Heterozygous TfR1 (Transferrin Receptor 1) Deletion in Pathogenesis of Renal Fibrosis in Mice. Hypertension, 2020, 75, 413-421.	2.7	19
20	High Salt and IL (Interleukin)-17 in Aortic Dissection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 17-19.	2.4	3
21	Ultrasound Monitoring of Descending Aortic Aneurysms and Dissections in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2557-2559.	2.4	6
22	Angiotensin I Infusion Reveals Differential Effects of Angiotensin-Converting Enzyme in Aortic Resident Cells on Aneurysm Formation. Circulation Journal, 2020, 84, 825-829.	1.6	3
23	Hypercholesterolemia Accelerates Both the Initiation and Progression of Angiotensin II-induced Abdominal Aortic Aneurysms. Annals of Vascular Medicine and Research, 2020, 6, .	0.8	6
24	Aortic Strain Correlates With Elastin Fragmentation in Fibrillin-1 Hypomorphic Mice. Circulation Reports, 2019, 1, 199-205.	1.0	24
25	Haploinsufficiency of Transferrin Receptor 1 Impairs Angiogenesis with Reduced Mitochondrial Complex I in Mice with Limb Ischemia. Scientific Reports, 2019, 9, 13658.	3.3	7
26	Ultrasound Imaging of the Thoracic and Abdominal Aorta in Mice to Determine Aneurysm Dimensions. Journal of Visualized Experiments, 2019, , .	0.3	26
27	Influence of dietary iron intake restriction on the development of hypertension in weanling prehypertensive rats. Heart and Vessels, 2018, 33, 820-825.	1.2	5
28	Renin-Angiotensin System and Cardiovascular Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e108-e116.	2.4	104
29	Drebrin: a new player in angiotensin II-induced aortopathies. Cardiovascular Research, 2018, 114, 1699-1701.	3.8	Ο
30	Heterogeneity of aortic smooth muscle cells: A determinant for regional characteristics of thoracic aortic aneurysms?. Journal of Translational Internal Medicine, 2018, 6, 93-96.	2.5	17
31	Abstract 133: Heterozygous Deletion of Transferrin Receptor 1 Suppresses Angiogenesis in a Mouse Model of Hind Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
32	Smooth Muscle Cells Derived From Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1722-1726.	2.4	128
33	Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome. Heart and Vessels, 2017, 32, 1410-1414.	1.2	3
34	lron-restricted pair-feeding affects renal damage in rats with chronic kidney disease. PLoS ONE, 2017, 12, e0172157.	2.5	3
35	Attenuation of hypertension and renal damage in renovascular hypertensive rats by iron restriction. Hypertension Research, 2016, 39, 832-839.	2.7	15
36	Iron is associated with the development of hypoxia-induced pulmonary vascular remodeling in mice. Heart and Vessels, 2016, 31, 2074-2079.	1.2	7

HISASHI SAWADA

#	Article	IF	CITATIONS
37	Ex vivo comparison of angioscopy and histopathology for the evaluation of coronary plaque characteristics. International Journal of Cardiovascular Imaging, 2016, 32, 863-869.	1.5	10
38	Association of dietary iron restriction with left ventricular remodeling after myocardial infarction in mice. Heart and Vessels, 2016, 31, 222-229.	1.2	10
39	Experience of dietary iron intake restriction in patients with essential hypertension. International Journal of Cardiology, 2016, 206, 154-156.	1.7	1
40	Interleukin-18 disruption suppresses hypoxia-induced pulmonary artery hypertension in mice. International Journal of Cardiology, 2016, 202, 522-524.	1.7	15
41	Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling. American Journal of Hypertension, 2016, 29, 713-718.	2.0	17
42	Temporary Dietary Iron Restriction Affects the Process of Thrombus Resolution in a Rat Model of Deep Vein Thrombosis. PLoS ONE, 2015, 10, e0126611.	2.5	4
43	Worsening of proteinuria caused by combination therapy of hypertonic saline and low-dose furosemide for treatment of acute decompensated heart failure with overt diabetic nephropathy. Journal of Cardiology Cases, 2015, 12, 188-191.	0.5	1
44	Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease. Hypertension Research, 2015, 38, 463-470.	2.7	39
45	Increment of pentraxin3 expression in abdominal aortic aneurysm. International Journal of Cardiology, 2015, 195, 281-282.	1.7	4
46	Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice. Hypertension Research, 2015, 38, 317-322.	2.7	14
47	Aortic Iron Overload With Oxidative Stress and Inflammation in Human and Murine Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1507-1514.	2.4	69
48	Accuracy of OCT, Grayscale IVUS, and Their Combination for the Diagnosis of Coronary TCFA. JACC: Cardiovascular Imaging, 2015, 8, 451-460.	5.3	118
49	Response to Letter Regarding Article, "Thermodilution-Derived Coronary Blood Flow Pattern Immediately After Coronary Intervention as a Predictor of Microcirculatory Damage and Midterm Clinical Outcomes in Patients With ST-Segment–Elevation Myocardial Infarction― Circulation: Cardiovascular Interventions. 2014. 7. 418-418.	3.9	0
50	Thermodilution-Derived Coronary Blood Flow Pattern Immediately After Coronary Intervention as a Predictor of Microcirculatory Damage and Midterm Clinical Outcomes in Patients With ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Interventions, 2014, 7, 149-155.	3.9	29
51	Hepcidin is increased in the hypertrophied heart of Dahl salt-sensitive rats. International Journal of Cardiology, 2014, 172, e45-e47.	1.7	13
52	Intravenous Salt Supplementation With Low-Dose Furosemide for Treatment of Acute Decompensated Heart Failure. Journal of Cardiac Failure, 2014, 20, 295-301.	1.7	31
53	Abstract 12816: Cellular Iron Transport Protein, Transferrin Receptor 1 Plays a Role in the Pathophysiology of Pulmonary Arterial Hypertension. Circulation, 2014, 130, .	1.6	0
54	Abstract 14771: Iron Plays a Role in the Thrombus Formation of a Rat Model of Deep Vein Thrombosis. Circulation, 2014, 130, .	1.6	0

HISASHI SAWADA

#	Article	IF	CITATIONS
55	Nuclear factor-κB-hypoxia-inducible factor-2 pathway in aortic valve stenosis. Journal of Heart Valve Disease, 2014, 23, 558-66.	0.5	9
56	Impact of dietary iron restriction on the development of monocrotaline-induced pulmonary vascular remodeling and right ventricular failure in rats. Biochemical and Biophysical Research Communications, 2013, 436, 145-151.	2.1	17
57	Expression of interleukin-33 and ST2 in nonrheumatic aortic valve stenosis. International Journal of Cardiology, 2013, 168, 529-531.	1.7	17
58	Dietary iron restriction prevents further deterioration of renal damage in a chronic kidney disease rat model. Journal of Hypertension, 2013, 31, 1203-1213.	0.5	23
59	Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats. PLoS ONE, 2013, 8, e75906.	2.5	20
60	Involvement of bone morphogenetic protein-binding endothelial regulator in aortic valve stenosis. International Journal of Cardiology, 2011, 152, 107-109.	1.7	0
61	The Impact of Pravastatin Pre-Treatment on Periprocedural Microcirculatory Damage in Patients Undergoing Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 2011, 4, 513-520.	2.9	42
62	Dietary Iron Restriction Prevents Hypertensive Cardiovascular Remodeling in Dahl Salt-Sensitive Rats. Hypertension, 2011, 57, 497-504.	2.7	43