Lin-Hua Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189447/publications.pdf

Version: 2024-02-01

90 papers

8,919 citations

39 h-index 89 g-index

96 all docs 96 docs citations

96 times ranked 8860 citing authors

#	Article	IF	CITATIONS
1	Seed-aided green synthesis of metal-organic frameworks in water. Green Chemical Engineering, 2023, 4, 64-72.	6.3	6
2	Two isostructural metal–organic frameworks with unique nickel clusters for C ₂ H ₄ H ₄ mixture separation. Journal of Materials Chemistry A, 2022, 10, 12497-12502.	10.3	12
3	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	27. 5	109
4	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
5	A stable Co(II)-based metal-organic framework with dual-functional pyrazolate-carboxylate ligand: Construction and CO2 selective adsorption and fixation. Chinese Chemical Letters, 2021, 32, 918-922.	9.0	27
6	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie - International Edition, 2021, 60, 2053-2057.	13.8	43
7	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie, 2021, 133, 2081-2085.	2.0	1
8	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. Journal of the American Chemical Society, 2021, 143, 2784-2791.	13.7	61
9	Construction of a zeolite A-type multivariate metal–organic framework for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â~²} . CrystEngComm, 2021, 23, 4923-4929.	2.6	3
10	Encapsulation of bimetallic phosphides into graphitized carbon for pH-universal hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 63, 253-261.	12.9	20
11	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	6.7	47
12	Construction of a mixed ligand MOF as "green catalyst―for the photocatalytic degradation of organic dye in aqueous media. RSC Advances, 2021, 11, 23838-23845.	3.6	28
13	A Hydrolytically Stable Cu(II)-Based Metalâ^'Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 49509-49518.	8.0	18
14	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	6.0	89
15	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35375-35384.	8.0	32
16	Co ₇ -Cluster-Based Metalâ€"Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO ₂ Adsorption and Fixation. Crystal Growth and Design, 2020, 20, 7972-7978.	3.0	16
17	High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 331-338.	5.3	7
18	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	2.8	8

#	Article	IF	CITATIONS
19	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
20	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	6.0	88
21	Selective adsorption and separation of C ₂ hydrocarbons in a "flexible-robust― metal–organic framework based on a guest-dependent gate-opening effect. Chemical Communications, 2020, 56, 5520-5523.	4.1	35
22	A thin and high loading two-dimensional MOF nanosheet based mixed-matrix membrane for high permeance nanofiltration. Journal of Membrane Science, 2020, 603, 118049.	8.2	70
23	Exchange reactions in metal-organic frameworks: New advances. Coordination Chemistry Reviews, 2020, 421, 213421.	18.8	66
24	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	11.2	136
25	A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler. Journal of Membrane Science, 2019, 591, 117360.	8.2	76
26	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	47.7	366
27	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	12.8	164
28	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	13.7	172
29	Reaction duration-dependent formation of two Cu(<scp>ii</scp>)-MOFs with selective adsorption properties of C ₃ H ₄ over C ₃ H ₆ . Dalton Transactions, 2019, 48, 9225-9233.	3.3	9
30	A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158, 283-289.	2.2	10
31	Unique T-Shaped Ligand as a New Platform for Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 430-436.	3.0	10
32	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	8.7	158
33	Continuous Crystalline Membranes of a Ni(II)-Based Pillared-Layer Metal-Organic Framework In Situ Grown on Nickel Foam with Two Orientations. Crystals, 2018, 8, 383.	2.2	8
34	A Stable Zr(IV)-Based Metal–Organic Framework Constructed from C╀ Bridged Di-isophthalate Ligand for Sensitive Detection of Cr ₂ O ₇ ^{2–} in Water. Inorganic Chemistry, 2018, 57, 14260-14268.	4.0	62
35	Size-Controllable Synthesis of Zeolitic Imidazolate Framework/Carbon Nanotube Composites. Crystals, 2018, 8, 367.	2.2	23
36	Flexible metal–organic frameworks for the wavelength-based luminescence sensing of aqueous pH. Journal of Materials Chemistry C, 2018, 6, 10628-10639.	5.5	45

#	Article	IF	CITATIONS
37	Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds. CheM, 2018, 4, 1911-1927.	11.7	232
38	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	2.6	29
39	Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials. Dalton Transactions, 2017, 46, 4157-4160.	3.3	27
40	Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C ₂ H ₂ Over CO ₂ and CH ₄ . Inorganic Chemistry, 2017, 56, 2188-2197.	4.0	83
41	Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) lons in Water. ACS Applied Materials & Interfaces, 2017, 9, 10286-10295.	8.0	371
42	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	47.7	837
43	Bidentate Phosphine-Assisted Synthesis of an All-Alkynyl-Protected Ag ₇₄ Nanocluster. Journal of the American Chemical Society, 2017, 139, 12346-12349.	13.7	148
44	A Copper(II)-Paddlewheel Metal–Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. ACS Applied Materials & Detection Active	8.0	109
45	Functionalized Baseâ€Stable Metalâ€"Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	2.1	43
46	A Baseâ€Resistant Zn ^{II} â€Based Metal–Organic Framework: Synthesis, Structure, Postsynthetic Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871.	2.8	16
47	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 2016, 138, 6204-6216.	13.7	1,273
48	Nanocage containing metal-organic framework constructed from a newly designed low symmetry tetra-pyrazole ligand. Journal of Coordination Chemistry, 2016, 69, 3242-3249.	2.2	1
49	Nanostructure array assisted aggregation-based growth of a Co-MOF-74 membrane on a Ni-foam substrate for gas separation. RSC Advances, 2016, 6, 94177-94183.	3.6	21
50	In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal–Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 23331-23337.	8.0	72
51	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	38.1	1,905
52	A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. Chemical Communications, 2015, 51, 7610-7613.	4.1	44
53	High CO ₂ â€Capture Ability of a Porous Organic Polymer Bifunctionalized with Carboxy and Triazole Groups. Chemistry - A European Journal, 2013, 19, 11590-11597.	3.3	130
54	Magnetic variation induced by structural transformation from coordination chains to layers upon dehydration. Dalton Transactions, 2012, 41, 13741.	3.3	21

#	Article	IF	CITATIONS
55	Flexible porous coordination polymers constructed from 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4′-azopyridine. Dalton Transactions, 2011, 40, 8549.	3.3	36
56	Crystallographic studies into the role of exposed rare earth metal ion for guest sorption. CrystEngComm, 2011, 13, 5849.	2.6	22
57	Flexible Metal–Organic Framework with Hydrophobic Pores. Chemistry - A European Journal, 2011, 17, 13653-13656.	3.3	56
58	Organic ammonium ion-occluded flexible coordination polymers: Thermal activation, structure transformation and proton transfer. Science China Chemistry, 2010, 53, 2144-2151.	8.2	21
59	Porous Coordination Polymer with Flexibility Imparted by Coordinatively Changeable Lithium lons on the Pore Surface. Inorganic Chemistry, 2010, 49, 1158-1165.	4.0	54
60	A one-dimensional organic–inorganic hybrid constructed by saturated Keggin polyoxoanions and [Cu ^I (4,4′-bipy)] _{ <i>n</i> } ^{ <i>n</i> } chains. Journal of Coordination Chemistry, 2009, 62, 1381-1387.	2.2	5
61	Organic–inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes. Journal of Solid State Chemistry, 2009, 182, 49-54.	2.9	17
62	Rational design microporous pillared-layer frameworks: syntheses, structures and gas sorption properties. CrystEngComm, 2009, 11, 177-182.	2.6	55
63	Syntheses, Structures and Spectroscopic Characterization of Extended Waughâ€Type Polyoxometalates with Metal Ions as Linkers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 977-980.	1.2	2
64	Influence of different site symmetries of Eu3+ centers on the luminescence properties of Anderson-based compounds. Inorganica Chimica Acta, 2008, 361, 2013-2018.	2.4	26
65	A three-dimensional microporous coordination polymer with fluorescent property. Journal of Molecular Structure, 2008, 891, 384-387.	3.6	12
66	Organic–inorganic hybrids assembled by bis(undecatungstophosphate) lanthanates and dinuclear copper(<scp>ii</scp>)–oxalate complexes. Dalton Transactions, 2008, , 115-120.	3.3	73
67	Hydrothermal synthesis, crystal structure and fluorescence of a 3D organic–inorganic hybrid coordination network [Cul(4,4′-bipy)]4[Î′-Mo8O26] exhibiting an interesting polymorphism. Journal of Coordination Chemistry, 2008, 61, 891-899.	2.2	3
68	Reactions of trivacant lone-pair-containing tungstobismutate and electrochemical behaviors of its sandwich-type products. Journal of Coordination Chemistry, 2007, 60, 567-579.	2.2	10
69	Synthesis, Crystal Structure, and Properties of a Supramolecular Compound Based on Waugh-type Polyanion and Moroxydine. Chemistry Letters, 2007, 36, 746-747.	1.3	6
70	Design and construction of a microporous metal–organic framework based on the pillared-layer motif. CrystEngComm, 2007, 9, 545-547.	2.6	72
71	Organicâ^Inorganic Hybrids Constructed of Anderson-Type Polyoxoanions and Oxalato-Bridged Dinuclear Copper Complexes. Inorganic Chemistry, 2007, 46, 3541-3547.	4.0	95
72	Hydrothermal assembly of pyrite-related framework: (NH4)2{[Ni(H2O)3]2[TeW6O24]} \hat{A} ·H2O. Journal of Coordination Chemistry, 2007, 60, 911-918.	2.2	9

#	Article	IF	CITATIONS
73	Photoluminescent metal-organic framework with hex topology constructed from infinite rod-shaped secondary building units and single e,e-trans-1,4-cyclohexanedicarboxylic dianion. Inorganica Chimica Acta, 2007, 360, 3108-3112.	2.4	24
74	Bimetals substituted germanotungstate complexes with open Wells-Dawson structure: Synthesis, structure, and electrochemical behavior of $[\{M(H2O)\}(\hat{l}/4-H2O)2K\{M(H2O)4\}(Ge2W18O66)]11\hat{a}^{*}(M=Co, Ni,) To the structure of the substituted germanotung state complexes with open Wells-Dawson structure: Synthesis, structure, and electrochemical behavior of [\{M(H2O)\}(\hat{l}/4-H2O)2K\{M(H2O)4\}(Ge2W18O66)]11\hat{a}^{*}(M=Co, Ni,) To the substituted germanotung state complexes with open Wells-Dawson structure: Synthesis, structure, and electrochemical behavior of [\{M(H2O)\}(\hat{l}/4-H2O)2K\{M(H2O)4\}(Ge2W18O66)]11\hat{a}^{*}(M=Co, Ni,) To the substituted germanotung state complexes with open Wells-Dawson structure: Synthesis, structure, and electrochemical behavior of [\{M(H2O)\}(\hat{l}/4-H2O)2K\{M(H2O)4\}(Ge2W18O66)]]11\hat{a}^{*}(M=Co, Ni,) To the substituted germanotung state of the substituted germanotung sta$	j E3. Q q0 0	0 29 BT /Over
75	Hybrid materials based on metal–organic coordination complexes and cage-like polyoxovanadate clusters: Synthesis, characterization and magnetic properties. Polyhedron, 2007, 26, 1514-1522.	2.2	45
76	New 3D two-fold interpenetrating polyoxometallate compounds built up of dititanium-substituted Keggin polyoxotungstates and transition metals. Polyhedron, 2007, 26, 3017-3022.	2,2	10
77	Poly[tetraaquabis(μ4-cyclohexane-1,4-dicarboxylato-κ6O:O,O′:O′′:O′′,O′′)hemi(μ2-cy Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1889-m1890.	clohexane	-1 ₃ 4-dicarbox
78	Tetraaqua(2,2′-bipyridine-κ2N,N′)nickel(II) cyclohexane-1,4-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2110-m2110.	0.2	1
79	A Double Chain Metalâ€organic Framework Constructed by Tetrameric Nickel(II) Units and 1,3,5â€Benzenetricarboxylic Trianions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 2049-2052.	1.2	4
80	Mixed-Valence Iron(II, III) Trimesates with Open Frameworks Modulated by Solvents. Inorganic Chemistry, 2007, 46, 7782-7788.	4.0	113
81	Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV) and Nickel(IV) Containing Two Types of Heteropoly Anions with 1:13 and 1:12 Stoichiometry. Inorganic Chemistry, 2006, 45, 8036-8040.	4.0	38
82	Synthesis and Structure of a Novel Supramolecular Compound [Co(2,2′-bipy) (H2O)4] [trans-1, 4-chdc] and Separation of Isomer of 1, 4-Cyclohexanedicarboxylic Acid1. Chemical Research in Chinese Universities, 2006, 22, 415-418.	2.6	1
83	Synthesis, structure and characterization of a new cobalt-containing germanotungstate with open Wells-Dawson structure: K13[{Co(H2O)}(μ-H2O)2K(Ge2W18O66)]. Journal of Molecular Structure, 2006, 785, 170-175.	3.6	19
84	Synthesis and characterization of one- to three-dimensional compounds composed of paradodecatungstate-B cluster and transition metals as linkers. Journal of Solid State Chemistry, 2006, 179, 2093-2100.	2.9	36
85	Hydrothermal assembly of (3,6)-connected networks with classical mineral structures constructed from Anderson-type heteropolymolybdate and metal cations. Journal of Solid State Chemistry, 2006, 179, 1681-1689.	2.9	35
86	A novel organically templated three-dimensional open framework vanadium tellurite: (NH3CH2CH2NH3)2V2Te6O18. Journal of Solid State Chemistry, 2005, 178, 1825-1829.	2.9	12
87	A new two-fold interpenetrated three-dimensional compound based on metal–organic coordination polymers and {V4O12} clusters: [Cu(bipy)]4V4O12·2H2O (bipy=4,4′-bipyridine). Journal of Molecular Structure, 2005, 753, 40-44.	3.6	12
88	A novel 2D layered network based on 13-vanadomanganate(IV): K3(HABOB)4[MnV13O38]Â-9H2O (ABOB=N-amidino-4-morpholincarboxamidine). Inorganic Chemistry Communication, 2005, 8, 433-436.	3.9	17
89	A three-dimensional porous metal–organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks. Chemical Communications, 2005, , 2402.	4.1	121
90	An organic–inorganic hybrid material constructed from a three-dimensional coordination complex cationic framework and entrapped hexadecavanadate clusters. Chemical Communications, 2005, , 5023.	4.1	98