
Sander S Van Leeuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163, 250-272.	1.9	250
2	Development of a 1H NMR structural-reporter-group concept for the primary structural characterisation of α-d-glucans. Carbohydrate Research, 2008, 343, 1114-1119.	1.1	100
3	Structural analysis of the α-d-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydrate Research, 2008, 343, 1237-1250.	1.1	86
4	Correlating Infant Fecal Microbiota Composition and Human Milk Oligosaccharide Consumption by Microbiota of 1â€Monthâ€Old Breastfed Infants. Molecular Nutrition and Food Research, 2019, 63, e1801214.	1.5	83
5	4,6-α-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70. Applied and Environmental Microbiology, 2011, 77, 8154-8163.	1.4	81
6	Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydrate Research, 2016, 425, 48-58.	1.1	75
7	The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Scientific Reports, 2020, 10, 4270.	1.6	70
8	Reaction kinetics and galactooligosaccharide product profiles of the Î ² -galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 2017, 225, 230-238.	4.2	67
9	Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences, 2016, 73, 2681-2706.	2.4	64
10	Structural analysis of the α-d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohydrate Research, 2008, 343, 1251-1265.	1.1	61
11	1 H NMR analysis of the lactose/l²-galactosidase-derived galacto-oligosaccharide components of Vivinal® GOS up to DP5. Carbohydrate Research, 2014, 400, 59-73.	1.1	54
12	Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Applied and Environmental Microbiology, 2015, 81, 7223-7232.	1.4	54
13	Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 13469-13485.	2.4	52
14	Structural Characterization of Bioengineered α-d-Glucans Produced by Mutant Glucansucrase GTF180 Enzymes of Lactobacillus reuteri Strain 180. Biomacromolecules, 2009, 10, 580-588.	2.6	50
15	Challenges and Pitfalls in Human Milk Oligosaccharide Analysis. Nutrients, 2019, 11, 2684.	1.7	43
16	4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Scientific Reports, 2017, 7, 39761.	1.6	42
17	Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 2017, 7, 40478.	1.6	41
18	Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology, 2014, 24, 728-739.	1.3	39

#	Article	IF	CITATIONS
19	The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-î±-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1224-1236.	1.1	39
20	Use of Wisteria floribunda agglutinin affinity chromatography in the structural analysis of the bovine lactoferrin N-linked glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1444-1455.	1.1	36
21	Gut bacterial deamination of residual levodopa medication for Parkinson's disease. BMC Biology, 2020, 18, 137.	1.7	32
22	Structural Analysis of Bioengineered α-d-Clucan Produced by a Triple Mutant of the Glucansucrase GTF180 Enzyme from Lactobacillus reuteri Strain 180: Generation of (α1→4) Linkages in a Native (1→3)(1→6)-α-d-Glucan. Biomacromolecules, 2008, 9, 2251-2258.	2.6	31
23	Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. Journal of Structural Biology, 2019, 205, 1-10.	1.3	31
24	Dietary Nâ€Glycans from Bovine Lactoferrin and TLR Modulation. Molecular Nutrition and Food Research, 2018, 62, 1700389.	1.5	31
25	Engineering of the <i>Bacillus circulans</i> β-Galactosidase Product Specificity. Biochemistry, 2017, 56, 704-711.	1.2	30
26	Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural and Food Chemistry, 2019, 67, 13969-13977.	2.4	29
27	Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 2018, 8, 16790.	1.6	28
28	Development of a 1 H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [β- d -Gal p -(1→ x)] n - d -Glc p type. Carbohydrate Research, 2014, 400, 54-58.	1.1	27
29	<i>Lactobacillus reuteri</i> Strains Convert Starch and Maltodextrins into Homoexopolysaccharides Using an Extracellular and Cell-Associated 4,6-α-Glucanotransferase. Journal of Agricultural and Food Chemistry, 2016, 64, 2941-2952.	2.4	27
30	Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Scientific Reports, 2017, 7, 9947.	1.6	27
31	Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1. Journal of Biological Chemistry, 2016, 291, 23709-23718.	1.6	26
32	Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry, 2018, 253, 236-246.	4.2	26
33	Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-î±-glucanotransferase enzymes. PLoS ONE, 2017, 12, e0172622.	1.1	26
34	Synthesis of a novel fluorescent ceramide analogue and its use in the characterization of recombinant ceramidase from Pseudomonas aeruginosa PA01. Chemistry and Physics of Lipids, 2002, 114, 181-191.	1.5	25
35	Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2020, 68, 7800-7808.	2.4	24
36	Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology, 2018, 102, 7935-7950.	1.7	22

SANDER S VAN LEEUWEN

#	Article	IF	CITATIONS
37	<i>N</i> - and <i>O</i> -Glycosylation of a Commercial Bovine Whey Protein Product. Journal of Agricultural and Food Chemistry, 2012, 60, 12553-12564.	2.4	21
38	Dynamic Temporal Variations in Bovine Lactoferrin Glycan Structures. Journal of Agricultural and Food Chemistry, 2020, 68, 549-560.	2.4	21
39	The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food and Function, 2020, 11, 3506-3515.	2.1	21
40	Galactosyl-Lactose Sialylation Using Trypanosoma cruzi trans-Sialidase as the Biocatalyst and Bovine κ-Casein-Derived Glycomacropeptide as the Donor Substrate. Applied and Environmental Microbiology, 2014, 80, 5984-5991.	1.4	20
41	Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology, 2016, 100, 7529-7539.	1.7	17
42	Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from <i>Lactobacillus reuteri</i> and Sucrose as Donor Substrate. Bioconjugate Chemistry, 2016, 27, 937-946.	1.8	16
43	Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate Research, 2019, 479, 13-22.	1.1	16
44	Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS Journal, 2008, 275, 6002-6010.	2.2	15
45	Enzymatic Decoration of Prebiotic Galacto-oligosaccharides (Vivinal GOS) with Sialic Acid UsingTrypanosoma cruzitrans-Sialidase and Two Bovine Sialoglycoconjugates as Donor Substrates. Journal of Agricultural and Food Chemistry, 2015, 63, 5976-5984.	2.4	15
46	Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by β-Galactosidases from Lactic Acid Bacteria and Bifidobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 4437-4446.	2.4	14
47	Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces viridochromogenes DSM40736 (Tü494). Microbiology (United Kingdom), 2017, 163, 1030-1041.	0.7	14
48	Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2017, 449, 59-64.	1.1	13
49	Structureâ€Specific Fermentation of Galactoâ€Oligosaccharides, Isomaltoâ€Oligosaccharides and Isomalto/Maltoâ€Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses. Molecular Nutrition and Food Research, 2021, 65, e2001077.	1.5	13
50	Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 2018, 465, 58-65.	1.1	12
51	Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. Frontiers in Immunology, 2020, 11, 790.	2.2	12
52	Biochemical Characterization of the Functional Roles of Residues in the Active Site of the β-Galactosidase from <i>Bacillus circulans</i> ATCC 31382. Biochemistry, 2017, 56, 3109-3118.	1.2	12
53	Inulin-grown <i>Faecalibacterium prausnitzii</i> cross-feeds fructose to the human intestinal epithelium. Gut Microbes, 2021, 13, 1993582.	4.3	12
54	In Depth Analysis of the Contribution of Specific Glycoproteins to the Overall Bovine Whey N-Linked Glycoprofile. Journal of Agricultural and Food Chemistry, 2020, 68, 6544-6553.	2.4	11

#	Article	IF	CITATIONS
55	Extraction and Quantitative Analysis of Goat Milk Oligosaccharides: Composition, Variation, Associations, and 2′-FL Variability. Journal of Agricultural and Food Chemistry, 2021, 69, 7851-7862.	2.4	11
56	Synthesis and Characterization of Sialylated Lactose- and Lactulose-Derived Oligosaccharides by <i>Trypanosoma cruzi</i> Trans-sialidase. Journal of Agricultural and Food Chemistry, 2019, 67, 3469-3479.	2.4	10
57	Sialic acid, the secret gift for the brain. Critical Reviews in Food Science and Nutrition, 2023, 63, 9875-9894.	5.4	10
58	Combining HPAEC-PAD, PGC-LC–MS, and 1D ¹ H NMR to Investigate Metabolic Fates of Human Milk Oligosaccharides in 1-Month-Old Infants: a Pilot Study. Journal of Agricultural and Food Chemistry, 2021, 69, 6495-6509.	2.4	9
59	A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Applied Microbiology and Biotechnology, 2015, 99, 7101-7113.	1.7	8
60	2′-Fucosyllactose impacts the expression of mucus-related genes in goblet cells and maintains barrier function of gut epithelial cells. Journal of Functional Foods, 2021, 85, 104630.	1.6	8
61	Molecular cloning and characterization of the alkaline ceramidase from Pseudomonas aeruginosa PA01. Protein Expression and Purification, 2003, 30, 94-104.	0.6	7
62	Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology, 2017, 101, 4495-4505.	1.7	6
63	Mutational Analysis of the Role of the Glucansucrase Gtf180-ΔN Active Site Residues in Product and Linkage Specificity with Lactose as Acceptor Substrate. Journal of Agricultural and Food Chemistry, 2018, 66, 12544-12554.	2.4	6
64	Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile. International Dairy Journal, 2020, 110, 104814.	1.5	6
65	Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 2018, 470, 57-63.	1.1	5
66	Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Applied Microbiology and Biotechnology, 2019, 103, 707-718.	1.7	5
67	Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (ClyCAM-1) whey protein: Intercow differences and dietary effects. Journal of Dairy Science, 2021, 104, 5056-5068.	1.4	3