Jong-Myong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12539-12544.	7.1	622
2	Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 2008, 49, 1135-1149.	3.1	475
3	Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011, 286, 321-332.	2.1	377
4	Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science, 2015, 6, 114.	3.6	367
5	Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 1580-1588.	3.1	308
6	Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 2017, 3, 17097.	9.3	232
7	Transition of Chromatin Status During the Process of Recovery from Drought Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 847-856.	3.1	208
8	Chromatin regulation functions in plant abiotic stress responses. Plant, Cell and Environment, 2010, 33, 604-611.	5.7	194
9	Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1. PLoS Genetics, 2011, 7, e1002055.	3.5	148
10	Arabidopsis HDA6 is required for freezing tolerance. Biochemical and Biophysical Research Communications, 2011, 406, 414-419.	2.1	133
11	The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates <i>FLOWERING LOCUS C</i> Transcription via Chromatin Remodeling under Short-Term Cold Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 4378-4390.	6.6	106
12	A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. Scientific Reports, 2016, 6, 23181.	3.3	106
13	The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response. Plant Physiology, 2017, 175, 1760-1773.	4.8	76
14	A member of the YER057c/yjgf/Uk114 family links isoleucine biosynthesis and intact mitochondria maintenance inSaccharomyces cerevisiae. Genes To Cells, 2001, 6, 507-517.	1.2	72
15	An Epigenetic Integrator: New Insights into Genome Regulation, Environmental Stress Responses and Developmental Controls by HISTONE DEACETYLASE 6. Plant and Cell Physiology, 2012, 53, 794-800.	3.1	71
16	The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Scientific Reports, 2018, 8, 7831.	3.3	59
17	Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 776-783.	3.1	58
18	Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana EMBO Journal 2010 29, 352-362	7.8	49

Jong-Myong Kim

4

#	Article	IF	CITATIONS
19	tasiRNA-ARF Pathway Moderates Floral Architecture in <i>Arabidopsis</i> Plants Subjected to Drought Stress. BioMed Research International, 2014, 2014, 1-10.	1.9	44
20	Aquifex aeolicus tRNA (Gm18) Methyltransferase Has Unique Substrate Specificity. Journal of Biological Chemistry, 2003, 278, 25081-25090.	3.4	38
21	Arabidopsis Tiling Array Analysis to Identify the Stress-Responsive Genes. Methods in Molecular Biology, 2010, 639, 141-155.	0.9	27
22	Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Scientific Reports, 2021, 11, 6280.	3.3	23
23	The cloning and characterization of theCDC50 gene family inSaccharomyces cerevisiae. Yeast, 2001, 18, 195-205.	1.7	19
24	Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase. Plant Physiology, 2017, 175, 457-472.	4.8	16
25	Intracellular localization of histone deacetylase HDA6 in plants. Journal of Plant Research, 2019, 132, 629-640.	2.4	7
26	Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1062, 405-426.	0.9	6
27	Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biology, 2022, 20, 83.	3.8	5

Microarray Analysis for Studying the Abiotic Stress Responses in Plants. , 2010, , 333-355.