Andreas Othonos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7189217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lowâ€Threshold, Highly Stable Colloidal Quantum Dot Shortâ€Wave Infrared Laser enabled by Suppression of Trapâ€Assisted Auger Recombination. Advanced Materials, 2022, 34, e2107532.	11.1	15
2	p-Type Iodine-Doping of Cu3N and Its Conversion to γ-CuI for the Fabrication of γ-CuI/Cu3N p-n Heterojunctions. Electronic Materials, 2022, 3, 15-26.	0.9	8
3	Flexible, Free-Standing Polymer Membranes Sensitized by CsPbX3 Nanocrystals as Gain Media for Low Threshold, Multicolor Light Amplification. ACS Photonics, 2022, 9, 2385-2397.	3.2	7
4	Impact of Oxygen on the Properties of Cu ₃ N and Cu _{3–<i>x</i>} N _{1–<i>x</i>} O <i>_x</i> . Journal of Physical Chemistry C, 2021, 125, 3680-3688.	1.5	11
5	Surface Functionalization of CsPbBr ₃ Îanocrystals for Photonic Applications. ACS Applied Nano Materials, 2021, 4, 5084-5097.	2.4	14
6	Ultralongâ€Range Polaritonâ€Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie - International Edition, 2021, 60, 16661-16667.	7.2	37
7	Ultralongâ€Range Polaritonâ€Assisted Energy Transfer in Organic Microcavities. Angewandte Chemie, 2021, 133, 16797-16803.	1.6	8
8	Controlling the optical properties of nanostructured oxide-based polymer films. Scientific Reports, 2021, 11, 16009.	1.6	8
9	Optical Transitions in Silver Indium Selenide Nanocrystals: Implications for Light-Emitting and Light-Imaging Applications. ACS Applied Nano Materials, 2021, 4, 11239-11248.	2.4	3
10	Ultrafast dynamics and short-lived carriers in Cu nitride and oxynitride layers. Journal of Applied Physics, 2020, 128, 125704.	1.1	1
11	Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots. Nano Letters, 2020, 20, 5909-5915.	4.5	38
12	Exciton–Ligand Interactions in PbS Quantum Dots Capped with Metal Chalcogenides. Journal of Physical Chemistry C, 2020, 124, 27848-27857.	1.5	5
13	Observation of the Direct Energy Band Gaps of Defect-Tolerant Cu3N by Ultrafast Pump-Probe Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 3459-3469.	1.5	13
14	High-Temperature Pb Doping of SnO ₂ and Growth Limitations of Pb _{<i>x</i>} Sn _{1–<i>x</i>} O ₂ Nanowires Versus Low-Temperature Growth of Pb _{<i>x</i>} Sn _{1–<i>x</i>} O for Energy Storage and Conversion. Journal of Physical Chemistry C, 2019, 123, 16415-16423.	1.5	3
15	Unraveling the Radiative Pathways of Hot Carriers upon Intense Photoexcitation of Lead Halide Perovskite Nanocrystals. ACS Nano, 2019, 13, 5799-5809.	7.3	15
16	Epitaxial highly ordered Sb:SnO2 nanowires grown by the vapor liquid solid mechanism on m-, r- and a-Al2O3. Nanoscale Advances, 2019, 1, 1980-1990.	2.2	8
17	Efficient Optical Amplification in the Nanosecond Regime from Formamidinium Lead Iodide Nanocrystals. ACS Photonics, 2018, 5, 907-917.	3.2	30
18	SnO2/PbOx (x = 1, 2) Core–Shell Nanowires and Their Growth on C-Fiber Networks for Energy Storage. Journal of Physical Chemistry C, 2018, 122, 25813-25821.	1.5	6

#	Article	IF	CITATIONS
19	Doping and Conductivity Limitations in Sb:SnO ₂ Nanowires Grown by the Vapor Liquid Solid Mechanism. Journal of Physical Chemistry C, 2018, 122, 22709-22716.	1.5	6
20	Photovoltaic limitations of BODIPY:fullerene based bulk heterojunction solar cells. Synthetic Metals, 2017, 226, 25-30.	2.1	14
21	Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 12434-12440.	1.5	62
22	Core–shell PbS/Sn:In ₂ O ₃ and branched PbIn ₂ S ₄ /Sn:In ₂ O ₃ nanowires in quantum dot sensitized solar cells. Nanotechnology, 2017, 28, 054004.	1.3	7
23	Sn:ln ₂ O ₃ and Sn:ln ₂ O ₃ /NiS ₂ Core–Shell Nanowires on Ni, Mo Foils and C Fibers for H ₂ and O ₂ Generation. Journal of Physical Chemistry C, 2017, 121, 27839-27848.	1.5	5
24	The influence of additives in the stoichiometry of hybrid lead halide perovskites. AIP Advances, 2017, 7, .	0.6	7
25	The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids. Scientific Reports, 2016, 6, 18735.	1.6	33
26	Pb doping of In2O3 and their conversion to highly conductive PbS/In2S3â^'3xO3x nanowires with infra red emission. Materials Letters, 2016, 166, 129-132.	1.3	3
27	Current Transport Properties of CuS/Sn:In ₂ O ₃ versus CuS/SnO ₂ Nanowires and Negative Differential Resistance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 11-20.	1.5	10
28	Förster resonant energy transfer from an inorganic quantum well to a molecular material: Unexplored aspects, losses, and implications to applications. Journal of Chemical Physics, 2015, 143, 214701.	1.2	5
29	Sn doped β-Ga2O3 and β-Ga2S3 nanowires with red emission for solar energy spectral shifting. Journal of Applied Physics, 2015, 118, .	1.1	17
30	Sulfur doping of M/In2O3 (M=Al,W) nanowires with room temperature near infra red emission. AIP Advances, 2015, 5, 097101.	0.6	2
31	Surface passivation and conversion of SnO2 to SnS2 nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 198, 10-13.	1.7	8
32	Electrical, structural, and optical properties of sulfurized Sn-doped In2O3 nanowires. Nanoscale Research Letters, 2015, 10, 995.	3.1	7
33	Ultrafast Spectroscopy and Red Emission from β-Ga2O3/β-Ga2S3 Nanowires. Nanoscale Research Letters, 2015, 10, 1016.	3.1	15
34	Femtosecond laser inscription of Bragg and complex gratings in coated and encapsulated silica and low-loss polymer optical fibers. , 2015, , .		0
35	Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires. APL Materials, 2014, 2, 116107.	2.2	4
36	Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism. APL Materials, 2014, 2, .	2.2	18

#	Article	IF	CITATIONS
37	Photophysics of PbS Quantum Dot Films Capped with Arsenic Sulfide Ligands. Advanced Energy Materials, 2014, 4, 1301547.	10.2	15
38	Zn3N2 nanowires: growth, properties and oxidation. Nanoscale Research Letters, 2013, 8, 221.	3.1	11
39	Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments. Nanoscale Research Letters, 2013, 8, 383.	3.1	30
40	Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization. Applied Surface Science, 2013, 278, 101-105.	3.1	13
41	Ultrafast transient spectroscopy and photoluminescence properties of V2O5 nanowires. Applied Physics Letters, 2013, 103, .	1.5	21
42	Sizeâ€Dependent Charge Transfer in Blends of PbS Quantum Dots with a Lowâ€Gap Siliconâ€Bridged Copolymer. Advanced Energy Materials, 2013, 3, 1490-1499.	10.2	29
43	Structural properties of SnO ₂ nanowires and the effect of donor like defects on its charge distribution. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 226-229.	0.8	9
44	Concentration and excitation effects on the exciton dynamics of poly(3-hexylthiophene)/PbS quantum dot blend films. Nanotechnology, 2013, 24, 235707.	1.3	4
45	Excitation dynamics of a low bandgap silicon-bridged dithiophene copolymer and its composites with fullerenes. Applied Physics Letters, 2012, 100, 153303.	1.5	4
46	Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Applied Physics Letters, 2012, 100, .	1.5	40
47	Synthesis of hybrid polymethacrylate–noble metal (M = Au, Pd) nanoparticles for the growth of metal-oxide semiconductor nanowires. RSC Advances, 2012, 2, 4370.	1.7	1
48	A systematic study of the nitridation of SnO2 nanowires grown by the vapor liquid solid mechanism. Journal of Crystal Growth, 2012, 340, 28-33.	0.7	10
49	Well-defined fluoro- and carbazole-containing diblock copolymers: synthesis, characterization and immobilization onto Au-coated silicon surfaces. RSC Advances, 2012, 2, 8741.	1.7	2
50	The nitridation of ZnO nanowires. Nanoscale Research Letters, 2012, 7, 175.	3.1	4
51	Gallium hydride vapor phase epitaxy of GaN nanowires. Nanoscale Research Letters, 2011, 6, 262.	3.1	14
52	An investigation into the conversion of In2O3 into InN nanowires. Nanoscale Research Letters, 2011, 6, 311.	3.1	24
53	Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires. Nanoscale Research Letters, 2011, 6, 622.	3.1	39
54	Optical Properties of Organic Semiconductor Blends with Nearâ€Infrared Quantumâ€Dot Sensitizers for Light Harvesting Applications. Advanced Energy Materials, 2011, 1, 802-812.	10.2	88

#	Article	IF	CITATIONS
55	Enhanced growth and photoluminescence properties of SnxNy (x>y) nanowires grown by halide chemical vapor deposition. Journal of Crystal Growth, 2011, 316, 25-29.	0.7	5
56	High yield–low temperature growth of indium sulphide nanowires via chemical vapor deposition. Journal of Crystal Growth, 2010, 312, 656-661.	0.7	14
57	Hydride-assisted growth of GaN nanowires on Au/Si(001) via the reaction of Ga with NH3 and H2. Journal of Crystal Growth, 2010, 312, 2631-2636.	0.7	7
58	Carrier dynamics in InS nanowires grown via chemical vapor deposition. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2258-2262.	0.8	2
59	Carrier dynamics in β-Ga2O3 nanowires. Journal of Applied Physics, 2010, 108, 124302.	1.1	23
60	(Invited) Optical Response of II-VI ZnSe Nanowires. ECS Transactions, 2010, 28, 193-202.	0.3	2
61	A systematic investigation into the conversion of β-Ga2O3 to GaN nanowires using NH3 and H2: Effects on the photoluminescence properties. Journal of Applied Physics, 2010, 108, 124319.	1.1	15
62	Defect states of chemical vapor deposition grown GaN nanowires: Effects and mechanisms in the relaxation of carriers. Journal of Applied Physics, 2009, 106, 054311.	1.1	16
63	Carrier relaxation dynamics in SnxNy nanowires grown by chemical vapor deposition. Journal of Applied Physics, 2009, 106, 114303.	1.1	7
64	Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport. Nanoscale Research Letters, 2009, 4, .	3.1	30
65	Low Temperature Growth of In2O3and InN Nanocrystals on Si(111) via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In. Nanoscale Research Letters, 2009, 4, 491-7.	3.1	12
66	Femtosecond Carrier Dynamics in In2O3Nanocrystals. Nanoscale Research Letters, 2009, 4, 526-531.	3.1	10
67	Monitoring Charge Exchange in P3HT-Nanotube Composites Using Optical and Electrical Characterisation. Nanoscale Research Letters, 2009, 4, 635-639.	3.1	6
68	Tin Oxide Nanowires: The Influence of Trap States on Ultrafast Carrier Relaxation. Nanoscale Research Letters, 2009, 4, 828-833.	3.1	35
69	Synthesis of Tin Nitride Sn x N y Nanowires by Chemical Vapour Deposition. Nanoscale Research Letters, 2009, 4, 1103-1109.	3.1	14
70	Ultrafast Dynamics of Localized and Delocalized Polaron Transitions in P3HT/PCBM Blend Materials: The Effects of PCBM Concentration. Nanoscale Research Letters, 2009, 4, 1475-1480.	3.1	26
71	Ultrafast time-resolved spectroscopy of Si nanocrystals embedded in SiO2 matrix. Journal of Alloys and Compounds, 2009, 483, 597-599.	2.8	4
72	Ultrafast time-resolved spectroscopy of ZnSe nanowires: Carrier dynamics of defect-related states. Journal of Alloys and Compounds, 2009, 483, 600-603.	2.8	20

#	Article	IF	CITATIONS
73	Influence of surface-related states on the carrier dynamics in (Ga,In)N/GaN single quantum wells. Applied Physics Letters, 2009, 94, .	1.5	7
74	Ultrafast time-resolved spectroscopy of In2O3 nanowires. Journal of Applied Physics, 2009, 106, 084307.	1.1	29
75	Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films. Nanoscale Research Letters, 2008, 3, .	3.1	3
76	Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites. Nanoscale Research Letters, 2008, 3, .	3.1	14
77	Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination. Nanoscale Research Letters, 2008, 3, .	3.1	22
78	Determination of critical points on silicon nanofilms: surface and quantum confinement effects. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3776-3779.	0.8	2
79	Timeâ€resolved ultrafast carrier dynamics in asâ€grown nanocrystalline silicon films: the effect of film thickness and grain boundaries. Physica Status Solidi - Rapid Research Letters, 2008, 2, 19-21.	1.2	7
80	Direct observation of excitons in polymer/carbon nanotube composites at room temperature: The influence of nanotube concentration. Diamond and Related Materials, 2008, 17, 1600-1603.	1.8	6
81	Observation of Quantum Confinement Effects with cmd="newline" Ultrashort Excitation in the Vicinity of Direct Critical Points cmd="newline" in Silicon Nanofilms. Research Letters in Physics, 2008, 2008, 1-5.	0.2	1
82	Optical properties of polyelectrolyte quantum dot multilayer films prepared using the layer by layer self-assembly method. Journal of Applied Physics, 2008, 103, 083511.	1.1	2
83	Temporal evolution of effects of ultrafast carrier dynamics in In0.33Ga0.67N: above and near the bandgap. Semiconductor Science and Technology, 2007, 22, 158-162.	1.0	5
84	Ultrafast transient photoinduced absorption in silicon nanocrystals: Coupling of oxygen-related states to quantized sublevels. Applied Physics Letters, 2007, 90, 171103.	1.5	40
85	Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires. Applied Physics Letters, 2007, 91, .	1.5	30
86	Femtosecond carrier dynamics of InxGa1â^'xN thin films grown on GaN (0001): Effect of carrier-defect scattering. Journal of Applied Physics, 2007, 102, 073104.	1.1	7
87	Ultrafast carrier dynamics on conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites. Applied Physics Letters, 2007, 91, 111117.	1.5	28
88	Influence of grain size on ultrafast carrier dynamics in thin nanocrystalline silicon films. Applied Physics Letters, 2007, 90, 191114.	1.5	19
89	The role of surface vibrations and quantum confinement effect to the optical properties of very thin nanocrystalline silicon films. Journal of Applied Physics, 2007, 102, 083534.	1.1	29
90	Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites. Journal of Applied Physics, 2007, 102, 083104.	1.1	34

#	Article	IF	CITATIONS
91	Quantum confinement and interface structure of Si nanocrystals of sizes 3–5nm embedded in a-SiO2. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 128-134.	1.3	24
92	Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra. Sensors and Actuators B: Chemical, 2007, 121, 231-237.	4.0	18
93	Fibre Bragg Gratings. , 2006, , 189-269.		75
94	Femtosecond carrier dynamics in implanted and highly annealed polycrystalline silicon. Semiconductor Science and Technology, 2006, 21, 1041-1046.	1.0	3
95	Ellipsometric analysis of ion-implanted polycrystalline silicon films before and after annealing. Thin Solid Films, 2006, 496, 253-258.	0.8	26
96	Optical and structural properties of implanted Si wafers: the effects of implantation energy and subsequent isochronal annealing temperature. Semiconductor Science and Technology, 2006, 21, 1059-1063.	1.0	4
97	Femtosecond time-resolved study in InxGa1â^'xN (0001) ultrathin epilayers: Effects of high indium mole fraction and thickness of the films. Applied Physics Letters, 2006, 89, 241109.	1.5	1
98	Study of the annealing kinetic effect and implantation energy on phosphorus-implanted silicon wafers using spectroscopic ellipsometry. Journal of Applied Physics, 2006, 99, 123514.	1.1	17
99	Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light. Applied Physics Letters, 2006, 88, 181107.	1.5	7
100	Ultrafast carrier dynamics in InxGa1â^'xN (0001) epilayers: Effects of high fluence excitation. Applied Physics Letters, 2006, 88, 121128.	1.5	10
101	Ultrafast carrier dynamics in highly implanted and annealed polycrystalline silicon films. Journal of Physics: Conference Series, 2005, 10, 263-266.	0.3	Ο
102	Effects of Ge concentration, boron co-doping, and hydrogenation on fiber Bragg grating characteristics. Microwave and Optical Technology Letters, 2005, 44, 148-152.	0.9	10
103	Optical Characterization of Varnish Films by Spectroscopic Ellipsometry for Application in Artwork Conservation. Applied Spectroscopy, 2005, 59, 94-99.	1.2	7
104	Fine art painting characterization by spectroscopic ellipsometry: preliminary measurements on varnish layers. Thin Solid Films, 2004, 455-456, 207-212.	0.8	3
105	Photomodulated thermoreflectance investigation at elevated temperatures: plasma versus thermal effect. Applied Physics Letters, 2003, 82, 1132-1134.	1.5	1
106	High-temperature photomodulated thermoreflectance measurements on phosphorus implanted and annealed silicon wafers. Journal of Applied Physics, 2003, 94, 7121-7127.	1.1	1
107	Photomodulated thermoreflectance detection of hydrogen at elevated temperatures: a detection limit. Applied Physics Letters, 2003, 82, 904-906.	1.5	5
108	Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing. Physical Review B, 2002, 66, .	1.1	9

#	Article	IF	CITATIONS
109	Spatial dependence of ultrafast carrier recombination centers of phosphorus-implanted and annealed silicon wafers. Applied Physics Letters, 2002, 81, 856-858.	1.5	5
110	Influence of temperature and modulation frequency on the thermal activation coupling term in laser photothermal theory. Journal of Applied Physics, 2002, 92, 1280-1285.	1.1	64
111	Characterization of reflectivity inversion, α- and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates. Journal of Applied Physics, 2002, 91, 3829-3840.	1.1	39
112	Bragg gratings in optical fibers. , 2001, , 367-480.		7
113	Optically thin palladium films on silicon-based substrates and nanostructure formation: effects of hydrogen. Applied Surface Science, 2000, 161, 54-60.	3.1	18
114	Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Physics Today, 2000, 53, 61-62.	0.3	142
115	Bragg Gratings in Optical Fibers: Fundamentals and Applications. , 2000, , 79-187.		53
116	Thermal wave hydrogen gas sensor characterized via photothermal deflection measurements. , 1999, , .		0
117	Photothermal radiometric measurements on metal contaminated silicon wafers. , 1999, , .		Ο
118	Room temperature hydrogen gas detection with optically thin palladium films on silicon oxide using photomodulated thermoreflectance. , 1999, , .		0
119	Probing ultrafast carrier and phonon dynamics in semiconductors. Journal of Applied Physics, 1998, 83, 1789-1830.	1.1	371
120	Temperature-induced reflectivity changes and activation of hydrogen sensitive optically thin palladium films on silicon oxide. Review of Scientific Instruments, 1998, 69, 3331-3338.	0.6	7
121	Hydrogen gas detection via photothermal deflection measurement. Review of Scientific Instruments, 1997, 68, 3544-3552.	0.6	9
122	Chapter 3 Photoluminescence and Raman Scattering of Ion Implanted Semiconductors. Influence of Annealing. Semiconductors and Semimetals, 1997, 46, 73-114.	0.4	0
123	Photothermal radiometric and spectroscopic measurements on silicon nitride thin films. Journal of Applied Physics, 1997, 82, 6215-6219.	1.1	6
124	Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68, 4309-4341.	0.6	756
125	Diagnostics of nonradiative defects in the bulk and surface of Brewster-cut Ti:sapphire laser materials using photothermal radiometry. IEEE Journal of Quantum Electronics, 1997, 33, 2301-2310.	1.0	4
126	Ultrafast dynamics of nonlinear absorption in lowâ€ŧemperatureâ€grown GaAs. Applied Physics Letters, 1996, 68, 2544-2546.	1.5	103

#	Article	IF	CITATIONS
127	Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Optics Letters, 1996, 21, 1405.	1.7	95
128	Multi-wavelength Raman probing of phosphorus implanted silicon wafers. Nuclear Instruments & Methods in Physics Research B, 1996, 117, 367-374.	0.6	5
129	Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing. Optics Communications, 1996, 127, 200-204.	1.0	45
130	Spectrally broadband Bragg grating mirror for an erbiumâ€doped fiber laser. Optical Engineering, 1996, 35, 1088.	0.5	13
131	Nonâ€contacting measurements of photocarrier lifetimes in bulk―and polycrystalline thinâ€film Si photoconductive devices by photothermal radiometry. Journal of Applied Physics, 1996, 80, 5332-5341.	1.1	40
132	Photothermal radiometric investigation of implanted silicon: The influence of dose and thermal annealing. Applied Physics Letters, 1996, 69, 821-823.	1.5	28
133	Narrow linewidth excimer laser for inscribing Bragg gratings in optical fibers. Review of Scientific Instruments, 1995, 66, 3112-3115.	0.6	10
134	Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy. Optical Engineering, 1995, 34, 3451.	0.5	10
135	Reconstruction Mechanisms in Ion Implanted and Annealed Silicon Wafers. Defect and Diffusion Forum, 1995, 117-118, 45-64.	0.4	2
136	High-Resolution Quadrature Photopyroelectric Spectroscopy of a-Si:H Thin Films Deposited on Silicon Wafers. Applied Spectroscopy, 1995, 49, 819-824.	1.2	1
137	Novel and improved methods of writing Bragg gratings with phase masks. IEEE Photonics Technology Letters, 1995, 7, 1183-1185.	1.3	41
138	Photoluminescence measurements on phosphorus implanted silicon: Annealing kinetics of defects. Journal of Applied Physics, 1995, 78, 796-800.	1.1	6
139	Large ultrafast optical nonlinearities in As-rich GaAs. Electronics Letters, 1994, 30, 1704-1706.	0.5	28
140	Superimposed multiple Bragg gratings. Electronics Letters, 1994, 30, 1972-1974.	0.5	71
141	Optical spectroscopy on implanted and annealed silicon wafers: Plasma resonance wavelength. Journal of Applied Physics, 1994, 75, 3377-3384.	1.1	7
142	Raman spectroscopy and spreading resistance analysis of phosphorus implanted and annealed silicon. Journal of Applied Physics, 1994, 75, 8032-8038.	1.1	32
143	Raman spectroscopy using a fiber optic probe with subwavelength aperture. Applied Physics Letters, 1994, 64, 1768-1770.	1.5	64
144	Determination of erbium distribution in optical fibers using confocal optical microscopy. IEEE Photonics Technology Letters, 1994, 6, 437-439.	1.3	6

#	Article	IF	CITATIONS
145	Single-ended infrared photothermal radiometric measurement of quantum efficiency and metastable lifetime in solid-state laser materials: The case of ruby (Cr/sup 3+/:Al/sub 2/O/sub 3/). IEEE Journal of Quantum Electronics, 1993, 29, 1498-1504.	1.0	14
146	A multiplexed Bragg grating fiber laser sensor system. IEEE Photonics Technology Letters, 1993, 5, 1112-1114.	1.3	71
147	Absolute nonradiative energy-conversion-efficiency spectra inTi3+:Al2O3crystals measured by noncontact quadrature photopyroelectric spectroscopy. Physical Review B, 1993, 48, 6808-6821.	1.1	41
148	Spectroscopy and analysis of radiative and nonradiative processes inTi3+:Al2O3crystals. Physical Review B, 1993, 48, 5922-5934.	1.1	45
149	Fiber Bragg grating laser sensor. Optical Engineering, 1993, 32, 2841.	0.5	22
150	<title>Fiber laser sensor array</title> . , 1993, , .		1
151	Free carrier and lattice-heating-induced changes to the reflectivity of epitaxial GeSi alloys following picosecond pulse excitation. Solid State Communications, 1992, 82, 325-328.	0.9	7
152	Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale. Physical Review B, 1991, 43, 6682-6690.	1.1	47
153	Fluorescence studies of multiple-photon ionization processes: Four- and five-photon ionization of Sr at wavelengths of 558–590 nm. Physical Review A, 1989, 39, 3392-3400.	1.0	11
154	Hot-carrier dynamics in Ge on single picosecond timescales: Comparing Raman and reflectivity experiments with a self-consistent kinetic model. Solid-State Electronics, 1989, 32, 1573-1577.	0.8	6
155	Picosecond Raman Scattering From Non-Equilibrium Collective Modes In Diamond And Zincblende Semiconductors. , 1988, , .		2