
Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7188923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	15.6	465
2	High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. Journal of Energy Chemistry, 2020, 41, 126-134.	7.1	191
3	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a Highâ€Sulfurâ€Loading Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800201.	10.2	188
4	Caging Nb ₂ O ₅ Nanowires in PECVDâ€Derived Graphene Capsules toward Bendable Sodiumâ€ion Hybrid Supercapacitors. Advanced Materials, 2018, 30, e1800963.	11.1	155
5	A Highly Stretchable Crossâ€Linked Polyacrylamide Hydrogel as an Effective Binder for Silicon and Sulfur Electrodes toward Durable Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705015.	7.8	148
6	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li–S Batteries. ACS Nano, 2018, 12, 10240-10250.	7.3	146
7	High Rate Electrochemical Capacitors from Three-Dimensional Arrays of Vanadium Nitride Functionalized Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24381-24393.	1.5	145
8	A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19036-19045.	5.2	139
9	Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta, 2013, 105, 378-383.	2.6	121
10	<i>In situ</i> optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chemical Society Reviews, 2019, 48, 5432-5453.	18.7	120
11	Recent progress in the tailored growth of two-dimensional hexagonal boron nitride <i>via</i> chemical vapour deposition. Chemical Society Reviews, 2018, 47, 4242-4257.	18.7	107
12	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy, 2018, 53, 432-439.	8.2	105
13	Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Science Bulletin, 2022, 67, 933-945.	4.3	96
14	Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy and Environmental Science, 2012, 5, 6156.	15.6	94
15	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15733-15741.	4.0	92
16	Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Materials, 2020, 27, 51-60.	9.5	80
17	Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures. Electrochimica Acta, 2013, 111, 802-808.	2.6	78
18	In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. Journal of Power Sources, 2014, 249, 311-319.	4.0	76

LI ZHANG

#	Article	IF	CITATIONS
19	Selfâ€Assembled Binary Organic Granules with Multiple Lithium Uptake Mechanisms toward Highâ€Energy Flexible Lithium″on Hybrid Supercapacitors. Advanced Energy Materials, 2018, 8, 1802273.	10.2	68
20	PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019, 22, 29-39.	9.5	65
21	Defects Engineering of Lightweight Metal–Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13803-13813.	7.3	62
22	Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 711-719.	5.2	59
23	Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. Journal of Materials Chemistry A, 2013, 1, 7601.	5.2	52
24	Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium–metal batteries operating at 35 °C. Journal of Materials Chemistry A, 2020, 8, 13351-13363.	5.2	51
25	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
26	Trifluoropropylene Carbonateâ€Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Siliconâ€Based Anodes. Advanced Functional Materials, 2019, 29, 1906548.	7.8	49
27	High-Strength agarose gel electrolyte enables long-endurance wearable Al-air batteries with greatly suppressed self-corrosion. Energy Storage Materials, 2021, 34, 427-435.	9.5	45
28	Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO 4 /graphite cells. Electrochimica Acta, 2015, 173, 323-330.	2.6	43
29	A Binary Cyclic Carbonates-Based Electrolyte Containing Propylene Carbonate and Trifluoropropylene Carbonate for 5V Lithium-Ion Batteries. Electrochimica Acta, 2015, 167, 151-159.	2.6	43
30	Reversible Lithiumâ€ion Uptake in Poly(methylmethacrylate) Thinâ€Film via Lithiation/Delithiation at In Situ Formed Intramolecular Cyclopentanedione. Advanced Energy Materials, 2016, 6, 1601375.	10.2	43
31	In Situ/Operando Spectroscopic Characterizations Guide the Compositional and Structural Design of Lithium–Sulfur Batteries. Small Methods, 2020, 4, 1900467.	4.6	42
32	Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. Nanoscale Horizons, 2020, 5, 895-903.	4.1	42
33	Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method. Journal of Power Sources, 2015, 274, 1180-1187.	4.0	40
34	Strongly Coupled MoS ₂ Nanocrystal/Ti ₃ C ₂ Nanosheet Hybrids Enable High apacity Lithiumâ€lon Storage. ChemSusChem, 2020, 13, 1485-1490.	3.6	39
35	Design and construction of core-shell heterostructure of Ni-V layered double hydroxide composite electrode materials for high-performance hybrid supercapacitor and L-Tryptophan sensor. Journal of Alloys and Compounds, 2022, 890, 161781.	2.8	39
36	Nitrogen-doped graphdiyne nanowall stabilized dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 27535-27546.	5.2	28

LI ZHANG

#	Article	IF	CITATIONS
37	Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Materials, 2018, 12, 110-118.	9.5	26
38	Tailoring the Interplay between Ternary Composite Binder and Graphite Anodes toward High-Rate and Long-Life Li-Ion Batteries. Electrochimica Acta, 2016, 191, 70-80.	2.6	25
39	Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 49, 71-79.	7.1	20
40	Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Metals, 2021, 40, 1366-1372.	3.6	18
41	Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahighâ€Capacity and Highâ€Rate Organic Electrodes. Advanced Materials, 2021, 33, e2104039.	11.1	18
42	In situ growth of three-dimensional graphene coatings on arbitrary-shaped micro/nano materials and its mechanism studies. Carbon, 2015, 92, 84-95.	5.4	17
43	Eightâ€Electron Redox Cyclohexanehexone Anode for Highâ€Rate Highâ€Capacity Lithium Storage. Advanced Energy Materials, 2022, 12, .	10.2	16
44	In-plane Vacancy-Induced Growth of Ultra-High Loading Cobalt Oxide-Graphene Composite for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2014, 136, 330-339.	2.6	12
45	Yolk–shell structured metal oxide@carbon nanoring anode boosting performance of lithium-ion batteries. New Journal of Chemistry, 2019, 43, 16148-16155.	1.4	10
46	Dynamic Locking of Interfacial Side Reaction Sites Promotes Aluminumâ€Air Batteries Close to Theoretical Capacity. Advanced Sustainable Systems, 2022, 6, 2100420.	2.7	3