Brenda R Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7188334/publications.pdf

Version: 2024-02-01

53660 49773 8,012 103 45 87 citations h-index g-index papers 103 103 103 9550 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovascular Research, 2022, 118, 141-155.	1.8	17
2	Primary cilia control endothelial permeability by regulating expression and location of junction proteins. Cardiovascular Research, 2022, 118, 1583-1596.	1.8	12
3	Intracranial aneurysm wall (in)stability–current state of knowledge and clinical perspectives. Neurosurgical Review, 2022, 45, 1233-1253.	1.2	9
4	Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Scientific Reports, 2021, 11, 5135.	1.6	6
5	Lymphatic Connexins and Pannexins in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 5734.	1.8	6
6	Browning of White Adipose Tissue as a Therapeutic Tool in the Fight against Atherosclerosis. Metabolites, 2021, 11, 319.	1.3	18
7	Activation of the Hypoxia-Inducible Factor Pathway Inhibits Epithelial Sodium Channel–Mediated Sodium Transport in Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2021, 32, 3130-3145.	3.0	9
8	Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Frontiers in Physiology, 2021, 12, 727338.	1.3	10
9	Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness. Frontiers in Cardiovascular Medicine, 2021, 8, 775307.	1.1	8
10	Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules, 2020, 10, 1225.	1.8	24
11	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	1.6	48
12	Non-canonical roles of connexins. Progress in Biophysics and Molecular Biology, 2020, 153, 35-41.	1.4	14
13	A Genetic Polymorphism in the Pannexin1 Gene Predisposes for The Development of Endothelial Dysfunction with Increasing BMI. Biomolecules, 2020, 10, 208.	1.8	2
14	Impaired SMAD1/5 Mechanotransduction and Cx37 (Connexin37) Expression Enable Pathological Vessel Enlargement and Shunting. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e87-e104.	1.1	33
15	Artery-Associated Sympathetic Innervation Drives Rhythmic Vascular Inflammation of Arteries and Veins. Circulation, 2019, 140, 1100-1114.	1.6	37
16	Biological Functions of Connexin43 Beyond Intercellular Communication. Trends in Cell Biology, 2019, 29, 835-847.	3.6	54
17	ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Scientific Reports, 2019, 9, 16556.	1.6	41
18	KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence. Frontiers in Physiology, 2019, 10, 80.	1.3	24

#	Article	IF	Citations
19	Chronic fructose renders pancreatic $\hat{\Gamma}^2$ -cells hyper-responsive to glucose-stimulated insulin secretion through extracellular ATP signaling. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E25-E41.	1.8	28
20	Disturbed flow induces a sustained, stochastic NF-κB activation which may support intracranial aneurysm growth in vivo. Scientific Reports, 2019, 9, 4738.	1.6	25
21	Selective inhibition of Panx1 channels decreases hemostasis and thrombosis in vivo. Thrombosis Research, 2019, 183, 56-62.	0.8	12
22	Sex-related differences in wall remodeling and intraluminal thrombus resolution in a rat saccular aneurysm model. Journal of Neurosurgery, 2019, , 1-14.	0.9	8
23	Endothelial connexins in vascular function. Vascular Biology (Bristol, England), 2019, 1, H117-H124.	1.2	20
24	RB459 and RB462 antibodies recognize mouse Pannexin1 protein by immunofluorescent staining. Antibody Reports, 2019, 2, e39.	0.0	3
25	Correlating Clinical Risk Factors and Histological Features in Ruptured and Unruptured Human Intracranial Aneurysms: The Swiss AneuX Study. Journal of Neuropathology and Experimental Neurology, 2018, 77, 555-566.	0.9	34
26	An Overview of the Focus of the International Gap Junction Conference 2017 and Future Perspectives. International Journal of Molecular Sciences, 2018, 19, 2823.	1.8	3
27	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
28	Role of hemodynamics in initiation/growth of intracranial aneurysms. European Journal of Clinical Investigation, 2018, 48, e12992.	1.7	57
29	Dendritic Cell Migration Toward CCL21 Gradient Requires Functional Cx43. Frontiers in Physiology, 2018, 9, 288.	1.3	11
30	Differential Association of Cx37 and Cx40 Genetic Variants in Atrial Fibrillation with and without Underlying Structural Heart Disease. International Journal of Molecular Sciences, 2018, 19, 295.	1.8	15
31	Connexins and Pannexins in Vascular Function and Disease. International Journal of Molecular Sciences, 2018, 19, 1663.	1.8	42
32	Pannexin1 Single Nucleotide Polymorphism and Platelet Reactivity in a Cohort of Cardiovascular Patients. Cell Communication and Adhesion, 2017, 23, 11-15.	1.0	10
33	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	1.8	193
34	Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis. Scientific Reports, 2017, 7, 13706.	1.6	18
35	Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. Journal of Cell Science, 2017, 130, 3619-3630.	1.2	119
36	Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacological Reviews, 2017, 69, 396-478.	7.1	191

3

#	Article	IF	CITATIONS
37	Human venous valve disease caused by mutations in <i>FOXC2</i> and <i>GJC2</i> . Journal of Experimental Medicine, 2017, 214, 2437-2452.	4.2	29
38	Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. International Journal of Molecular Sciences, 2017, 18, 850.	1.8	16
39	Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS ONE, 2017, 12, e0181476.	1.1	17
40	Connexin40 controls endothelial activation by dampening NFκB activation. Oncotarget, 2017, 8, 50972-50986.	0.8	12
41	Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thrombosis and Haemostasis, 2016, 115, 484-492.	1.8	172
42	Comparison between direct and reverse electroporation of cells inÂsitu: a simulation study. Physiological Reports, 2016, 4, e12673.	0.7	7
43	Connexins and their channels in inflammation. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 413-439.	2.3	93
44	Central Role of P2Y ₆ UDP Receptor in Arteriolar Myogenic Tone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1598-1606.	1.1	64
45	Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein Connexin43. Cardiovascular Research, 2016, 109, 385-396.	1.8	55
46	Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 817-824.	1.1	61
47	Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques. PLoS ONE, 2016, 11, e0159679.	1.1	19
48	Adipokines at the crossroad between obesity and cardiovascular disease. Thrombosis and Haemostasis, 2015, 113, 553-566.	1.8	105
49	Endothelial Connexin37 and Connexin40 participate in basal but not agonist-induced NO release. Cell Communication and Signaling, 2015, 13, 34.	2.7	30
50	Functional role of a polymorphism in the Pannexin1 gene in collageninduced platelet aggregation. Thrombosis and Haemostasis, 2015, 114, 325-336.	1.8	34
51	Atherosclerosis severity is not affected by a deficiency in ILâ€33/ST2 signaling. Immunity, Inflammation and Disease, 2015, 3, 239-246.	1.3	18
52	Role of connexins and pannexins in cardiovascular physiology. Cellular and Molecular Life Sciences, 2015, 72, 2779-2792.	2.4	37
53	Lymphatic vessels: an emerging actor in atherosclerotic plaque development. European Journal of Clinical Investigation, 2015, 45, 100-108.	1.7	47
54	FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Journal of Clinical Investigation, 2015, 125, 3861-3877.	3.9	186

#	Article	IF	Citations
55	Titration of the gap junction protein Connexin43 reduces atherogenesis. Thrombosis and Haemostasis, 2014, 112, 390-401.	1.8	19
56	Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice. Cardiovascular Research, 2014, 102, 329-337.	1.8	30
57	Mutations in cardiovascular connexin genes. Biology of the Cell, 2014, 106, 269-293.	0.7	29
58	Biomechanical factors in atherosclerosis: mechanisms and clinical implications. European Heart Journal, 2014, 35, 3013-3020.	1.0	359
59	Connexins in lymphatic vessel physiology and disease. FEBS Letters, 2014, 588, 1271-1277.	1.3	37
60	Connexins in atherosclerosis. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 157-166.	1.4	80
61	Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovascular Research, 2013, 99, 304-314.	1.8	38
62	Stabilization of atherosclerotic plaques: an update. European Heart Journal, 2013, 34, 3251-3258.	1.0	101
63	The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovascular Research, 2012, 93, 41-49.	1.8	37
64	Roles of Connexins in Atherosclerosis and Ischemia-Reperfusion Injury. Current Pharmaceutical Biotechnology, 2012, 13, 17-26.	0.9	16
65	Lack of association between connexin40 polymorphisms and coronary artery disease. Atherosclerosis, 2012, 222, 148-153.	0.4	14
66	Shear stress modulates the expression of the atheroprotective protein Cx37 in endothelial cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 299-309.	0.9	65
67	Mechanotransduction, PROX1, and FOXC2 Cooperate to Control Connexin37 and Calcineurin during Lymphatic-Valve Formation. Developmental Cell, 2012, 22, 430-445.	3.1	339
68	Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction. Journal of Clinical Investigation, 2012, 122, 4218-4230.	3.9	134
69	Risky communication in atherosclerosis and thrombus formation. Swiss Medical Weekly, 2012, 142, w13553.	0.8	12
70	Stabilisation of atherosclerotic plaques. Thrombosis and Haemostasis, 2011, 106, 1-19.	1.8	139
71	Mutations in connexin genes and disease. European Journal of Clinical Investigation, 2011, 41, 103-116.	1.7	138
72	Connexin Channel-Dependent Signaling Pathways in Inflammation. Journal of Vascular Research, 2011, 48, 91-103.	0.6	64

#	Article	IF	CITATIONS
73	Connexin 37 Limits Thrombus Propensity by Downregulating Platelet Reactivity. Circulation, 2011, 124, 930-939.	1.6	46
74	Gap Junction Protein Cx37 Interacts With Endothelial Nitric Oxide Synthase in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 827-834.	1.1	72
75	Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis, 2010, 31, 1922-1931.	1.3	41
76	Connexin43 modulates neutrophil recruitment to the lung. Journal of Cellular and Molecular Medicine, 2009, 13, 4560-4570.	1.6	93
77	Connexins participate in the initiation and progression of atherosclerosis. Seminars in Immunopathology, 2009, 31, 49-61.	2.8	29
78	Functional differences between human Cx37 polymorphic hemichannels. Journal of Molecular and Cellular Cardiology, 2009, 46, 499-507.	0.9	42
79	Connexins in Vascular Physiology and Pathology. Antioxidants and Redox Signaling, 2009, 11, 267-282.	2.5	160
80	Intercellular Communication in Atherosclerosis. Physiology, 2009, 24, 36-44.	1.6	32
81	Targeting Connexin 43 Prevents Platelet-Derived Growth Factor-BB–Induced Phenotypic Change in Porcine Coronary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 653-660.	2.0	56
82	Abstract 3716: Endothelial-specific Deletion Of The Gap Junction Protein Connexin43 Reduces Atherosclerosis In Mice. Circulation, 2008, 118, .	1.6	1
83	Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction?. Atherosclerosis, 2007, 191, 355-361.	0.4	50
84	Connexin37: a potential modifier gene of inflammatory disease. Journal of Molecular Medicine, 2007, 85, 787-795.	1.7	36
85	Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nature Medicine, 2006, 12, 950-954.	15.2	259
86	Reduced Connexin43 Expression Limits Neointima Formation After Balloon Distension Injury in Hypercholesterolemic Mice. Circulation, 2006, 113, 2835-2843.	1.6	92
87	Shear Stress and Cyclic Circumferential Stretch, But Not Pressure, Alter Connexin43 Expression in Endothelial Cells. Cell Communication and Adhesion, 2005, 12, 261-270.	1.0	47
88	Gap junctional communication in tissue inflammation and repair. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 197-207.	1.4	114
89	Connexins in leukocytes: shuttling messages?. Cardiovascular Research, 2004, 62, 357-367.	1.8	40
90	Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmunity Reviews, 2003, 2, 332-338.	2.5	94

#	Article	IF	Citations
91	Reduced Connexin43 Expression Inhibits Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation, 2003, 107, 1033-1039.	1.6	155
92	Dual Benefit of Reduced Cx43 on Atherosclerosis in LDL Receptor-Deficient Mice. Cell Communication and Adhesion, 2003, 10, 395-400.	1.0	37
93	Dual Benefit of Reduced Cx43 on Atherosclerosis in LDL Receptor-Deficient Mice. Cell Communication and Adhesion, 2003, 10, 395-400.	1.0	18
94	PPARÎ ³ but not PPARα Ligands Are Potent Repressors of Major Histocompatibility Complex Class II Induction in Atheroma-Associated Cells. Circulation Research, 2002, 90, 356-362.	2.0	52
95	Altered Pattern of Vascular Connexin Expression in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 225-230.	1.1	199
96	Statins Inhibit Leukocyte Recruitment. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1256-1258.	1.1	72
97	Inhibition of Endothelial Wound Repair by Dominant Negative Connexin Inhibitors. Molecular Biology of the Cell, 2001, 12, 831-845.	0.9	94
98	Statins as a newly recognized type of immunomodulator. Nature Medicine, 2000, 6, 1399-1402.	15.2	1,271
99	Selective inhibition of gap junction channel activity by synthetic peptides. Journal of Physiology, 1999, 516, 679-685.	1.3	67
100	Characterization of Gap Junction Channels in Adult Rabbit Atrial and Ventricular Myocardium. Circulation Research, 1997, 80, 673-681.	2.0	117
101	Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Molecular and Cellular Biochemistry, 1996, 157, 93-9.	1.4	145
102	Effects of cGMP-dependent phosphorylation on rat and human connexin43 gap junction channels. Pflugers Archiv European Journal of Physiology, 1995, 430, 770-778.	1.3	95
103	TPA Increases Conductance but Decreases Permeability in Neonatal Rat Cardiomyocyte Gap Junction Channels. Experimental Cell Research, 1995, 220, 456-463.	1.2	143