Philip Hodge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7188329/publications.pdf

Version: 2024-02-01

44 papers

1,244 citations

331538 21 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked 1301 citing authors

#	Article	IF	Citations
1	Nomenclature and terminology for linear lactic acid-based polymers (IUPAC Recommendations 2019). Pure and Applied Chemistry, 2020, 92, 193-211.	0.9	11
2	Introduction of Stilbene Derivatives and Cinnamate Ester Derivatives at the ï‰-End Groups of Poly(Methyl Methacrylate) Prepared via RAFT Polymerization. Polymers, 2020, 12, 2449.	2.0	2
3	A concise guide to polymer nomenclature for authors of papers and reports in polymer science and technology (IUPAC Technical Report). Pure and Applied Chemistry, 2020, 92, 797-813.	0.9	6
4	Synthesis of isopropyl-substituted anthraquinones via Friedel–Crafts acylations: migration of isopropyl groups. Royal Society Open Science, 2017, 4, 170451.	1.1	5
5	The use of polymer-supported Candida antarctica lipase B to achieve the entropically-driven ring-opening polymerization of macrocyclic bile acid derivatives via transesterification: selectivity of the reactions and the structures of the polymers produced. RSC Advances, 2015, 5, 93057-93066.	1.7	6
6	Recycling of condensation polymers via ring–chain equilibria. Polymers for Advanced Technologies, 2015, 26, 797-803.	1.6	13
7	A novel tin-based imidazolium-modified montmorillonite catalyst for the preparation of poly(butylene) Tj ETQq1 1 RSC Advances, 2015, 5, 6222-6231.	. 0.784314 1.7	ł rgBT /Ov <mark>erl</mark> i 7
8	Entropically Driven Ring-Opening Polymerization of Strainless Organic Macrocycles. Chemical Reviews, 2014, 114, 2278-2312.	23.0	134
9	A brief guide to polymer nomenclature (IUPAC Technical Report). Pure and Applied Chemistry, 2012, 84, 2167-2169.	0.9	48
10	Syntheses of random PETâ€∢i>coâ€PTTs and some related copolyesters by entropicallyâ€driven ringâ€opening polymerizations and by melt blending: Thermal properties and crystallinity. Journal of Polymer Science Part A, 2011, 49, 995-1005.	2.5	11
11	A Possible Means to Assist the Processing of PET, PTT and PBT. Macromolecular Materials and Engineering, 2010, 295, 374-380.	1.7	11
12	An Introduction to Entropicallyâ€driven Ringâ€opening Polymerizations. Macromolecular Symposia, 2010, 297, 6-17.	0.4	12
13	Entropically-driven ring-opening polymerization of macrocyclic esters with up to 84-membered rings catalysed by polymer-supported Candida antarctica lipase B. Polymer Chemistry, 2010, 1, 339-346.	1.9	27
14	Synthesis of i‰-End Group Functionalized Poly(methyl methacrylate)s via RAFT Polymerization. Macromolecules, 2010, 43, 7453-7464.	2.2	19
15	Polymers containing inâ€chain quinone moieties: synthesis and properties. Polymer International, 2009, 58, 261-266.	1.6	19
16	Preparation of nanocomposites by reversible additionâ€fragmentation chain transfer polymerization from the surface of quantum dots in miniemulsion. Journal of Polymer Science Part A, 2009, 47, 5367-5377.	2.5	25
17	Synthesis of electron-accepting polymers containing phenanthra-9,10-quinone units. Journal of Materials Chemistry, 2009, 19, 4148.	6.7	21
18	Toward the synthesis of strongly photoluminescing polyesters by entropically driven ringâ€opening polymerizations. Polymers for Advanced Technologies, 2008, 19, 569-577.	1.6	1

#	Article	IF	Citations
19	High-throughput screening of polymeric dispersants to accelerate the development of stable pigment dispersions. Journal of Materials Chemistry, 2008, 18, 182-189.	6.7	2
20	2,6-Diaryl-9,10-anthraquinones as models for electron-accepting polymers. New Journal of Chemistry, 2007, 31, 1585.	1.4	29
21	Synthesis of a Catechol-Based Poly(ether ether ketone) ("o-PEEKâ€) by Classical Step-Growth Polymerization and by Entropically Driven Ring-Opening Polymerization of Macrocyclic Oligomers. Macromolecules, 2006, 39, 6467-6472.	2.2	36
22	Experimental evidence for carbonyl–π electron cloud interactions. New Journal of Chemistry, 2006, 30, 1801-1807.	1.4	70
23	Synthesis of $2,2\hat{a}\in^2$ -biphenol- and $1,1\hat{a}\in^2$ bi(2-napthol)-based poly(ether sulfones) and copolymers by classical step-growth polymerization and by entropically-driven ring-opening polymerization of macrocyclic oligomers. Polymers for Advanced Technologies, 2006, 17, 682-690.	1.6	4
24	A High-Throughput Method for Determining the Stability of Pigment Dispersions. Macromolecular Rapid Communications, 2006, 27, 835-840.	2.0	13
25	A Novel Approach to Processing High-Performance Polymers that Exploits Entropically Driven Ring-Opening Polymerization. Macromolecular Rapid Communications, 2005, 26, 1377-1382.	2.0	15
26	Recent work on entropically-driven ring-opening polymerizations: some potential applications. Polymers for Advanced Technologies, 2005, 16, 84-94.	1.6	60
27	Synthesis of Organic Compounds Using Polymer-Supported Reagents, Catalysts, and/or Scavengers in Benchtop Flow Systemsâ€. Industrial & Engineering Chemistry Research, 2005, 44, 8542-8553.	1.8	81
28	Ringâ^Chain Interconversion in High-Performance Polymer Systems. 3. Cyclodepolymerization of Poly(m-phenylene isophthalamide) (Nomex) and Entropically Driven Ring-Opening Polymerization of the Macrocyclic Oligomers so Produced. Macromolecules, 2005, 38, 722-729.	2.2	27
29	Spontaneous Ring-Opening Polymerization of Macrocyclic Aromatic Thioether Ketones under Transient High-Temperature Conditions. Macromolecular Rapid Communications, 2004, 25, 808-811.	2.0	14
30	Entropically Driven Ring-Opening-Metathesis Polymerization of Macrocyclic Olefins with 21–84 Ring Atoms. Angewandte Chemie - International Edition, 2003, 42, 2412-2414.	7.2	76
31	Organic synthesis using polymer-supported reagents, catalysts and scavengers in simple laboratory flow systems. Current Opinion in Chemical Biology, 2003, 7, 362-373.	2.8	80
32	Cyclo-depolymerization of poly(propylene terephthalate): some ring-opening polymerizations of the cyclic oligomers produced. Polymers for Advanced Technologies, 2003, 14, 492-501.	1.6	26
33	Microfabrication of high-performance aromatic polymers as nanotubes or fibrils by in situ ring-opening polymerisation of macrocyclic precursors. Journal of Materials Chemistry, 2003, 13, 1504-1506.	6.7	13
34	A new method for the polymer-supported synthesis of cyclic oligoesters for potential applications in macrocyclic lactone synthesis and combinatorial chemistry. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 629-637.	1.3	22
35	Photochemical transformations of chromophoric methacrylates under the influence of light and laser radiation. Journal of Materials Chemistry, 2002, 12, 449-454.	6.7	10
36	A novel NMR method for screening soluble compound libraries. Chemical Communications, 2001, , 239-240.	2.2	35

PHILIP HODGE

#	Article	IF	CITATION
37	Facile attachment of functional moieties to crosslinked polystyrene beads via robust linkages: Suzuki reactions using polymer-supported boronic acids. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3403-3408.	1.3	2
38	Cyclic oligomers of poly(ether ketone) (PEK): synthesis, extraction from polymer, fractionation, and characterisation of the cyclic trimer, tetramer and pentamer. Journal of Materials Chemistry, 2000, 10, 2011-2016.	6.7	29
39	Cyclo-depolymerisation of poly(ethylene naphthalene-2,6-dicarboxylate) and ring-opening polymerisations of the cyclic oligomers obtained. Journal of Materials Chemistry, 2000, 10, 1533-1537.	6.7	38
40	Macrocyclic oligomers of the aromatic polyetherketone "PK99― synthesis, fractionation, structural characterisation and ring-opening polymerisation. Journal of Materials Chemistry, 2000, 10, 309-314.	6.7	19
41	A Grazing Incidence X-ray Diffraction Study of Langmuirâ-'Blodgett Films of Poly(vinylpyridine) Quaternized withn-Docosyl Bromide. Langmuir, 1998, 14, 5896-5899.	1.6	4
42	Polymer science branches out. Nature, 1993, 362, 18-19.	13.7	72
43	New low molar mass organosiloxanes with unusual ferroelectric properties. Liquid Crystals, 1993, 15, 739-744.	0.9	63
44	A new series of low molar mass ferroelectric organosiloxanes with unusual electro-optic properties. Ferroelectrics, 1993, 148, 379-387.	0.3	26