Onruthai Pinyakong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons(PAHs) Journal of General and Applied Microbiology, 2003, 49, 1-19.	0.7	189
2	Identification of novel metabolites in the degradation of phenanthrene bySphingomonassp. strain P2. FEMS Microbiology Letters, 2000, 191, 115-121.	1.8	126
3	Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. Journal of Hazardous Materials, 2018, 342, 561-570.	12.4	120
4	Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. Journal of Bioscience and Bioengineering, 2009, 108, 488-495.	2.2	98
5	16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. Journal of Hazardous Materials, 2018, 357, 119-127.	12.4	94
6	Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochemical and Biophysical Research Communications, 2003, 301, 350-357.	2.1	85
7	Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environmental Science and Pollution Research, 2015, 22, 4725-4735.	5.3	78
8	Degradation of phenanthrene on plant leaves by phyllosphere bacteria. Journal of General and Applied Microbiology, 2007, 53, 265-272.	0.7	64
9	Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. Journal of Applied Microbiology, 2013, 114, 1311-1324.	3.1	59
10	Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. Journal of Hazardous Materials, 2017, 334, 168-177.	12.4	59
11	Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochemical Engineering Journal, 2015, 93, 47-54.	3.6	49
12	Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Marine Pollution Bulletin, 2013, 74, 95-104.	5.0	48
13	Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environmental Monitoring and Assessment, 2010, 163, 477-488.	2.7	47
14	Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Marine Pollution Bulletin, 2018, 133, 595-605.	5.0	44
15	Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading sp. strain A4. FEMS Microbiology Letters, 2004, 238, 297-305.	1.8	43
16	Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation, 2013, 24, 387-397.	3.0	38
17	Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degradingSphingomonassp. strain A4. FEMS Microbiology Letters, 2004, 238, 297-305.	1.8	37
18	Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment: a microcosm study and bacterial community analysis. Environmental Science and Pollution Research, 2017, 24, 4591-4602.	5.3	36

#	Article	IF	CITATIONS
19	Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. Environmental Pollution, 2021, 277, 116769.	7.5	36
20	Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater. Journal of Hazardous Materials, 2012, 213-214, 466-473.	12.4	33
21	Quantitative ecological risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons in terrestrial soils of King George Island, Antarctica. Polar Science, 2017, 11, 19-29.	1.2	30
22	Production and Application of Gordonia westfalica GY40 Biosurfactant for Remediation of Fuel Oil Spill. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	23
23	The development of a liquid formulation of Pseudoxanthomonas sp. RN402 and its application in the treatment of pyrene-contaminated soil. Journal of Applied Microbiology, 2011, 111, 36-47.	3.1	19
24	Diesel oil removal by Serratia sp. W4-01 immobilized in chitosan-activated carbon beads. Environmental Science and Pollution Research, 2018, 25, 26927-26938.	5.3	19
25	Title is missing!. ScienceAsia, 2012, 38, 36.	0.5	17
26	Biodegradation of crude oil by immobilized Exiguobacterium sp. AO-11 and shelf life evaluation. Scientific Reports, 2021, 11, 12990.	3.3	17
27	Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms. Environmental Pollution, 2022, 292, 118309.	7.5	17
28	Development of an antibacterial chitin betainate wound dressing. Polymer Journal, 2014, 46, 505-510.	2.7	16
29	Degradation of Phenolic Compounds in Palm Oil Mill Effluent by Silica″mmobilized Bacteria in Internal Loop Airlift Bioreactors. Clean - Soil, Air, Water, 2016, 44, 383-392.	1.1	16
30	Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity. International Journal of Biological Macromolecules, 2017, 101, 719-728.	7.5	16
31	The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment microcosms, and the development of a liquid ready-to-use inoculum. Chemosphere, 2020, 250, 126303.	8.2	15
32	Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater. Chemosphere, 2021, 282, 130973.	8.2	15
33	Functional and transcriptional analyses of the initial oxygenase genes for acenaphthene degradation from Sphingomonas sp. strain A4. Microbiology (United Kingdom), 2006, 152, 2455-2467.	1.8	14
34	Variation of the mangrove sediment microbiomes and their phenanthrene biodegradation rates during the dry and wet seasons. Environmental Pollution, 2021, 289, 117849.	7.5	12
35	Tiamulin removal by wood-rot fungi isolated from swine farms andÂrole of ligninolytic enzymes. International Biodeterioration and Biodegradation, 2017, 116, 147-154.	3.9	11
36	Preparation and properties of gelatin nanofibers containing lipopeptide biosurfactant by electrospinning technique as the prototype of wound covering and healing materials. Materials Research Express, 2018, 5, 095401.	1.6	11

ONRUTHAI PINYAKONG

#	Article	IF	CITATIONS
37	Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. ScienceAsia, 2012, 38, 147.	0.5	9
38	Culture-independent study of bacterial communities in tropical river sediment. Bioscience, Biotechnology and Biochemistry, 2017, 81, 200-209.	1.3	8
39	Bacterial community structures and biodegradation kinetic of Tiamulin antibiotic degrading enriched consortia from swine wastewater. Journal of Environmental Health Science & Engineering, 2019, 17, 1121-1130.	3.0	8
40	Polyhydroxybutyrate (PHB) Production Using an Arabinose-Inducible Expression System in Comparison With Cold Shock Inducible Expression System in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 661096.	4.1	8
41	Paeniglutamicibacter terrestris sp. nov., isolated from phenanthrene-degrading consortium enriched from Antarctic soil. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	1.7	8
42	Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiology Letters, 2000, 191, 115-121.	1.8	5
43	Physiological changes in Rhodococcus ruber S103 immobilized on biobooms using low-cost media enhance stress tolerance and crude oil-degrading activity. Scientific Reports, 2022, 12, .	3.3	5
44	Concentration effect of <i>Chromolaena odorata</i> (Siam weed) crude extract on size and properties of gelatin nanofibers fabricated by electrospinning process. Journal of Industrial Textiles, 2022, 51, 1499S-1510S.	2.4	3
45	Production of lipopeptide biosurfactant by Bacillus subtilis GY19 and its application as oil-contaminated surface cleaning agent. ScienceAsia, 2022, 48, 43.	0.5	3
46	A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds. , 2015, , 5.1.5-1-5.1.5-18.		0