List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187692/publications.pdf Version: 2024-02-01

Μαρτιν Κνά:ά.

#	Article	IF	CITATIONS
1	Subtyping <i>Cryptosporidium ubiquitum,</i> a Zoonotic Pathogen Emerging in Humans. Emerging Infectious Diseases, 2014, 20, 217-224.	4.3	172
2	Unapparent Microsporidial Infection among Immunocompetent Humans in the Czech Republic. Journal of Clinical Microbiology, 2011, 49, 1064-1070.	3.9	129
3	Latent Microsporidial Infection in Immunocompetent Individuals – A Longitudinal Study. PLoS Neglected Tropical Diseases, 2011, 5, e1162.	3.0	104
4	Age-related and housing-dependence of Cryptosporidium infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Veterinary Parasitology, 2006, 137, 202-209.	1.8	101
5	Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitology Research, 2016, 115, 2243-2251.	1.6	82
6	<i>Cryptosporidium</i> Pig Genotype II in Immunocompetent Man. Emerging Infectious Diseases, 2009, 15, 982-983.	4.3	80
7	Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa). Veterinary Parasitology, 2013, 191, 218-227.	1.8	76
8	First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic. Veterinary Parasitology, 2008, 153, 220-224.	1.8	73
9	Long-Term Monitoring of Microsporidia, Cryptosporidium and Giardia Infections in Western Lowland Gorillas (Gorilla gorilla gorilla) at Different Stages of Habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS ONE, 2013, 8, e71840.	2.5	73
10	The first report on natural Enterocytozoon bieneusi and Encephalitozoon spp. infections in wild East-European House Mice (Mus musculus musculus) and West-European House Mice (M. m.) Tj ETQq0 0 0 rgB 2011 178 246-250	T /Overloct 1.8	۲ 10 Tf 50 382 70
11	Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (lk) in a horse. Veterinary Parasitology, 2015, 208, 135-142.	1.8	69
12	Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals. PLoS ONE, 2016, 11, e0147090.	2.5	68
13	Sources of potentially infectious human microsporidia: Molecular characterisation of microsporidia isolates from exotic birds in the Czech Republic, prevalence study and importance of birds in epidemiology of the human microsporidial infections. Veterinary Parasitology, 2009, 165, 125-130.	1.8	63
14	Prevalence and age-related infection of Cryptosporidium suis, C. muris and Cryptosporidium pig genotype II in pigs on a farm complex in the Czech Republic. Veterinary Parasitology, 2009, 160, 319-322.	1.8	61
15	Development of a Multilocus Sequence Tool for Typing <i>Cryptosporidium muris</i> and <i>Cryptosporidium andersoni</i> . Journal of Clinical Microbiology, 2011, 49, 34-41.	3.9	60
16	Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus) Tj ETQq0 0 0	rgBT /Over 1.6	lock 10 Tf 50
17	Latent Microsporidiosis Caused by Encephalitozoon cuniculi in Immunocompetent Hosts: A Murine Model Demonstrating the Ineffectiveness of the Immune System and Treatment with Albendazole. PLoS ONE, 2013, 8, e60941.	2.5	58

18Cryptosporidium apodemi sp. n. and Cryptosporidium ditrichi sp. n. (Apicomplexa: Cryptosporidiidae) in
Apodemus spp.. European Journal of Protistology, 2018, 63, 1-12.1.556

#	Article	IF	CITATIONS
19	Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasites and Vectors, 2019, 12, 41.	2.5	55
20	Prevalence and pathogenicity of Cryptosporidium andersoni in one Herd of Beef Cattle. Zoonoses and Public Health, 2003, 50, 451-457.	1.4	54
21	More than a rabbit's tale – Encephalitozoon spp. in wild mammals and birds. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 76-87.	1.5	54
22	Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs. Veterinary Parasitology, 2014, 201, 9-17.	1.8	53
23	Cryptosporidium proventriculi sp. n. (Apicomplexa: Cryptosporidiidae) in Psittaciformes birds. European Journal of Protistology, 2019, 69, 70-87.	1.5	52
24	Cryptosporidium testudinis sp. n., Cryptosporidium ducismarci Traversa, 2010 and Cryptosporidium tortoise genotype III (Apicomplexa: Cryptosporidiidae) in tortoises. Folia Parasitologica, 2016, 63, .	1.3	49
25	Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus). International Journal for Parasitology, 2013, 43, 805-817.	3.1	48
26	Enterocytozoon bieneusi and Encephalitozoon cuniculi in horses kept under different management systems in the Czech Republic. Veterinary Parasitology, 2012, 190, 573-577.	1.8	47
27	Cryptosporidium occultus sp. n. (Apicomplexa: Cryptosporidiidae) in rats. European Journal of Protistology, 2018, 63, 96-104.	1.5	46
28	<i>Cryptosporidium</i> Pig Genotype II in Immunocompetent Man. Emerging Infectious Diseases, 2009, 15, 982-983.	4.3	46
29	Prevalence and Pathogenicity of Cryptosporidium suis in Pre- and Post-weaned Pigs. Zoonoses and Public Health, 2006, 53, 239-243.	1.4	45
30	Extremely Reduced Levels of Heterozygosity in the Vertebrate Pathogen Encephalitozoon cuniculi. Eukaryotic Cell, 2013, 12, 496-502.	3.4	44
31	Molecular characterization of Cryptosporidium isolates from pigs at slaughterhouses in South Bohemia, Czech Republic. Parasitology Research, 2009, 104, 425-428.	1.6	43
32	Human Cryptosporidiosis Caused by <i>Cryptosporidium tyzzeri</i> and <i>C. parvum</i> Isolates Presumably Transmitted from Wild Mice. Journal of Clinical Microbiology, 2013, 51, 360-362.	3.9	43
33	Molecular characterization of Cryptosporidium spp. in pre-weaned dairy calves in the Czech Republic: Absence of C. ryanae and management-associated distribution of C. andersoni, C. bovis and C. parvum subtypes. Veterinary Parasitology, 2011, 177, 378-382.	1.8	41
34	Diversity of Microsporidia, Cryptosporidium and Giardia in Mountain Gorillas (Gorilla beringei) Tj ETQq0 0 0 rgBT	/Oyerlock	101f 50 142
35	Review of Cryptosporidium and Giardia in the eastern part of Europe, 2016. Eurosurveillance, 2018, 23, .	7.0	40 _

³⁶ Update on <i>Cryptosporidium</i> spp.: highlights from the Seventh International <i>Giardia</i> and
Cryptosporidium</i> Conference. Parasite, 2020, 27, 14.
2.0

#	Article	IF	CITATIONS
37	Infectivity and pathogenicity of Cryptosporidium andersoni to a novel host, southern multimammate mouse (Mastomys coucha). Veterinary Parasitology, 2007, 143, 229-233.	1.8	38
38	Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Veterinary Parasitology, 2008, 153, 363-367.	1.8	38
39	Microsporidia in exotic birds: Intermittent spore excretion of Encephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus). Veterinary Parasitology, 2010, 168, 196-200.	1.8	37
40	Occurrence of Cryptosporidium suis and Cryptosporidium scrofarum on commercial swine farms in the Czech Republic and its associations with age and husbandry practices. Parasitology Research, 2013, 112, 1143-1154.	1.6	37
41	Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia. PLoS ONE, 2016, 11, e0152771.	2.5	36
42	Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporidiidae) in farmed ostriches. Parasites and Vectors, 2020, 13, 340.	2.5	35
43	Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria (Myocastor coypus). Microorganisms, 2021, 9, 813.	3.6	35
44	New view on the age-specificity of pig Cryptosporidium by species-specific primers for distinguishing Cryptosporidium suis and Cryptosporidium pig genotype II. Veterinary Parasitology, 2011, 176, 120-125.	1.8	34
45	Concurrent Infection of the Urinary Tract with Encephalitozoon cuniculi and Enterocytozoon bieneusi in a Renal Transplant Recipient. Journal of Clinical Microbiology, 2014, 52, 1780-1782.	3.9	34
46	Zoonotic microsporidia in dogs and cats in Poland. Veterinary Parasitology, 2017, 246, 108-111.	1.8	34
47	Diversity of microsporidia (Fungi: Microsporidia) among captive great apes in European zoos and African sanctuaries: evidence for zoonotic transmission?. Folia Parasitologica, 2011, 58, 81-86.	1.3	34
48	Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife?. International Journal for Parasitology: Parasites and Wildlife, 2019, 9, 323-341.	1.5	32
49	Diversity of <i>Cryptosporidium</i> in common voles and description of <i>Cryptosporidium alticolis</i> sp. n. and <i>Cryptosporidium microti</i> sp. n. (Apicomplexa: Cryptosporidiidae). Parasitology, 2019, 146, 220-233.	1.5	31
50	Natural infection with two genotypes of Cryptosporidium in red squirrels (Sciurus vulgaris) in Italy. Folia Parasitologica, 2008, 55, 95-99.	1.3	31
51	Diversity of Enterocytozoon bieneusi genotypes among small rodents in southwestern Poland. Veterinary Parasitology, 2015, 214, 242-246.	1.8	29
52	Genetic diversity of Cryptosporidium spp. including novel identification of the Cryptosporidium muris and Cryptosporidium tyzzeri in horses in the Czech Republic and Poland. Parasitology Research, 2015, 114, 1619-1624.	1.6	29
53	Encephalitozoon cuniculi Genotype I as a Causative Agent of Brain Abscess in an Immunocompetent Patient. Journal of Clinical Microbiology, 2011, 49, 2769-2771.	3.9	28
54	Equine cryptosporidial infection associated with Cryptosporidium hedgehog genotype in Algeria. Veterinary Parasitology, 2013, 197, 350-353.	1.8	28

#	Article	IF	CITATIONS
55	Gastroenteritis Caused by the Cryptosporidium Hedgehog Genotype in an Immunocompetent Man. Journal of Clinical Microbiology, 2014, 52, 347-349.	3.9	28
56	North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes. Infection, Genetics and Evolution, 2015, 36, 287-293.	2.3	28
57	Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in South Bohemia, the Czech Republic. Veterinary Parasitology, 2009, 165, 141-144.	1.8	26
58	Native and introduced squirrels in Italy host different Cryptosporidium spp European Journal of Protistology, 2017, 61, 64-75.	1.5	26
59	The first report on Cryptosporidium suis and Cryptosporidium pig genotype II in Eurasian wild boars (Sus scrofa) (Czech Republic). Veterinary Parasitology, 2012, 184, 122-125.	1.8	25
60	Cryptosporidium galli and novel Cryptosporidium avian genotype VI in North American red-winged blackbirds (Agelaius phoeniceus). Parasitology Research, 2016, 115, 1901-1906.	1.6	25
61	Cryptosporidium tyzzeri and Cryptosporidium muris originated from wild West-European house mice (Mus musculus domesticus) and East-European house mice (Mus musculus musculus) are non-infectious for pigs. Experimental Parasitology, 2012, 131, 107-110.	1.2	24
62	Cryptosporidium parvum and Enterocytozoon bieneusi in American Mustangs and Chincoteague ponies. Experimental Parasitology, 2016, 162, 24-27.	1.2	24
63	Prevalence and molecular characteristics of urinary and intestinal microsporidia infections in renal transplant recipients. Clinical Microbiology and Infection, 2016, 22, 462.e5-462.e9.	6.0	24
64	<i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97.	1.5	24
65	Microsporidiosis and Cryptosporidiosis in HIV/AIDS Patients in St. Petersburg, Russia: Serological Identification of Microsporidia and <i>Cryptosporidium parvum</i> in Sera Samples from HIV/AIDS Patients. AIDS Research and Human Retroviruses, 2011, 27, 13-15.	1.1	22
66	Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitologica, 2016, 63, .	1.3	22
67	Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus). Infection, Genetics and Evolution, 2015, 32, 113-123.	2.3	21
68	Cryptosporidiosis in Other Vertebrates. , 2014, , 237-323.		21
69	Cryptosporidium suis and Cryptosporidium scrofarum in Eurasian wild boars (Sus scrofa) in Central Europe. Veterinary Parasitology, 2013, 197, 504-508.	1.8	20
70	Diversity of Cryptosporidium spp. in Apodemus spp. in Europe. European Journal of Protistology, 2019, 69, 1-13.	1.5	20
71	Cryptosporidium muris in a Reticulated Giraffe (Giraffa camelopardalis reticulata). Journal of Parasitology, 2010, 96, 211-212.	0.7	19
72	Significantly higher occurrence of Cryptosporidium infection in Roma children compared with non-Roma children in Slovakia. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1401-1406.	2.9	19

#	Article	IF	CITATIONS
73	Novel Cryptosporidium bat genotypes III and IV in bats from the USA and Czech Republic. Parasitology Research, 2015, 114, 3917-3921.	1.6	19
74	Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis). Parasites and Vectors, 2020, 13, 149.	2.5	19
75	Stray cats are more frequently infected with zoonotic protists than pet cats. Folia Parasitologica, 2017, 64, .	1.3	19
76	Lethal Encephalitozoon cuniculi genotype III infection in Steppe lemmings (Lagurus lagurus). Veterinary Parasitology, 2014, 205, 357-360.	1.8	18
77	NMR metabolomics reveals effects of Cryptosporidium infections on host cell metabolome. Gut Pathogens, 2019, 11, 13.	3.4	18
78	Subtyping Cryptosporidium ryanae: A Common Pathogen in Bovine Animals. Microorganisms, 2020, 8, 1107.	3.6	18
79	Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health. Annals of Agricultural and Environmental Medicine, 2013, 20, 695-8.	1.0	18
80	Detection of Encephalitozoon cuniculi in a new host—cockateel (Nymphicus hollandicus) using molecular methods. Parasitology Research, 2007, 101, 1685-1688.	1.6	17
81	Life cycle ofCryptosporidium murisin two rodents with different responses to parasitization. Parasitology, 2014, 141, 287-303.	1.5	17
82	The First Evidence of Cryptosporidium meleagridis Infection in a Colon Adenocarcinoma From an Immunocompetent Patient. Frontiers in Cellular and Infection Microbiology, 2019, 9, 35.	3.9	17
83	Cryptosporidium meleagridis and C. baileyi (Apicomplexa) in domestic and wild birds in Algeria. Folia Parasitologica, 2017, 64, .	1.3	17
84	Natural infection with two genotypes of Cryptosporidium in red squirrels (Sciurus vulgaris) in Italy. Folia Parasitologica, 2008, 55, 95-9.	1.3	17
85	Seropositivity for <i>Enterocytozoon bieneusi</i> , Czech Republic. Emerging Infectious Diseases, 2010, 16, 335-337.	4.3	16
86	Detection of Ancient DNA of <i>Encephalitozoon intestinalis</i> (Microsporidia) in Archaeological Material. Journal of Parasitology, 2014, 100, 356-359.	0.7	16
87	The genome of an Encephalitozoon cuniculi type III strain reveals insights into the genetic diversity and mode of reproduction of a ubiquitous vertebrate pathogen. Heredity, 2016, 116, 458-465.	2.6	16
88	Symptomatic respiratory Encephalitozoon cuniculi infection in renal transplant recipients. International Journal of Infectious Diseases, 2019, 79, 21-25.	3.3	16
89	Humoral immune response and spreading of Encephalitozoon cuniculi infection in experimentally infected ponies. Veterinary Parasitology, 2013, 197, 1-6.	1.8	15
90	First description of Cryptosporidium ubiquitum XIIa subtype family in farmed fur animals. European Journal of Protistology, 2017, 59, 108-113.	1.5	15

#	Article	IF	CITATIONS
91	Limited effect of adaptive immune response to control encephalitozoonosis. Parasite Immunology, 2017, 39, e12496.	1.5	15
92	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	2.5	15
93	Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels (Sciurus) Tj ETQq1 1	0,784314 3.6	⊦rgβT /Over
94	Viability staining and animal infectivity of Cryptosporidium andersoni oocysts after long-term storage. Parasitology Research, 2007, 100, 213-217.	1.6	14
95	Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Veterinary Parasitology, 2016, 230, 1-5.	1.8	14
96	Disseminated Infection of Encephalitozoon cuniculi Associated With Osteolysis of Hip Periprosthetic Tissue. Clinical Infectious Diseases, 2018, 67, 1228-1234.	5.8	14
97	<i>Cryptosporidium</i> infecting wild cricetid rodents from the subfamilies Arvicolinae and Neotominae. Parasitology, 2018, 145, 326-334.	1.5	14
98	Infectivity of gastric and intestinal Cryptosporidium species in immunocompetent Mongolian gerbils (Meriones unguiculatus). Veterinary Parasitology, 2009, 163, 33-38.	1.8	13
99	Effect of Piper betle on Giardia intestinalis infection inÂvivo. Experimental Parasitology, 2018, 184, 39-45.	1.2	13
100	Gastrointestinal parasites of arctic foxes (Vulpes lagopus) and sibling voles (Microtus levis) in Spitsbergen, Svalbard. Parasitology Research, 2019, 118, 3409-3418.	1.6	13
101	Cross-Border Investigations on the Prevalence and Transmission Dynamics of Cryptosporidium Species in Dairy Cattle Farms in Western Mainland Europe. Microorganisms, 2021, 9, 2394.	3.6	13
102	Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitology Research, 2010, 106, 1159-1166.	1.6	12
103	Activated CD8+ T cells contribute to clearance of gastric <i>Cryptosporidium muris</i> infections. Parasite Immunology, 2011, 33, 210-216.	1.5	12
104	Age related susceptibility of pigs to Cryptosporidium scrofarum infection. Veterinary Parasitology, 2014, 202, 330-334.	1.8	12
105	Cryptosporidium erinacei and C. parvum in a group of overwintering hedgehogs. European Journal of Protistology, 2016, 56, 15-20.	1.5	11
106	The course of infection caused by Encephalitozoon cuniculi genotype III in immunocompetent and immunodeficient mice. Experimental Parasitology, 2017, 182, 16-21.	1.2	11
107	Host specificity and age-dependent resistance to Cryptosporidium avium infection in chickens, ducks and pheasants. Experimental Parasitology, 2018, 191, 62-65.	1.2	11
108	Comparison of Selected Diagnostic Methods for Identification of Cryptosporidium parvum and Cryptosporidium andersoni in Routine Examination of Faeces. Zoonoses and Public Health, 2003, 50, 405-411.	1.4	10

#	Article	IF	CITATIONS
109	Encephalitozoon cuniculi in Raw Cow's Milk Remains Infectious After Pasteurization. Foodborne Pathogens and Disease, 2016, 13, 77-79.	1.8	10
110	Encephalitozoon cuniculi Genotype III Evinces a Resistance to Albendazole Treatment in both Immunodeficient and Immunocompetent Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	10
111	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	8.9	10
112	The opportunistic pathogen Encephalitozoon cuniculi in wild living Murinae and Arvicolinae in Central Europe. European Journal of Protistology, 2019, 69, 14-19.	1.5	9
113	<i>Cryptosporidium baileyi</i> Pulmonary Infection in Immunocompetent Woman with Benign Neoplasm. Emerging Infectious Diseases, 2020, 26, 1958-1961.	4.3	9
114	Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitologica, 2021, 68, .	1.3	9
115	Occurrence of Strongyloides papillosus associated with extensive pulmonary lesions and sudden deaths in calves on a beef farm in a highland area of South Bohemia (Czech Republic). Helminthologia, 2007, 44, 10-13.	0.9	8
116	Effects of selected Indonesian plant extracts on E.Âcuniculi infection inÂvivo. Experimental Parasitology, 2017, 181, 94-101.	1.2	8
117	Respiratory microsporidiosis caused by Enterocytozoon bieneusi in an HIV-negative hematopoietic stem cell transplant recipient. International Journal of Infectious Diseases, 2018, 77, 26-28.	3.3	8
118	Differences in the intensity of infection caused by Encephalitozoon cuniculi genotype II and III - Comparison using quantitative real-time PCR. Experimental Parasitology, 2018, 192, 93-97.	1.2	8
119	Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo, 2018, 68, 98-107.	0.6	8
120	Cryptosporidium meleagridis infection: the first report in Poland of its occurrence in an HIV-positive woman. Annals of Parasitology, 2016, 62, 239-241.	0.1	8
121	High Occurrence of Zoonotic Subtypes of Cryptosporidiumparvum in Cypriot Dairy Farms. Microorganisms, 2022, 10, 531.	3.6	8
122	Horse-Specific <i>Cryptosporidium</i> Genotype in Human with Crohn's Disease and Arthritis. Emerging Infectious Diseases, 2022, 28, .	4.3	8
123	The course of experimental giardiasis in Mongolian gerbil. Parasitology Research, 2018, 117, 2437-2443.	1.6	7
124	ExperimentalEncephalitozoon cuniculiInfection Acquired from Fermented Meat Products. Foodborne Pathogens and Disease, 2019, 16, 394-398.	1.8	7
125	Failed attempt of Cryptosporidium andersoni infection in lambs. Folia Parasitologica, 2004, 51, 373-374.	1.3	7
126	A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. Journal of Infection, 2022, 84, 710-721.	3.3	7

#	Article	IF	CITATIONS
127	Variability in susceptibility of voles (Arvicolinae) to experimental infection with Cryptosporidium muris and Cryptosporidium andersoni. Parasitology Research, 2012, 111, 471-473.	1.6	6
128	The first reported cases of human cryptosporidiosis caused by Cryptosporidium hominis in Slovak Republic. Folia Microbiologica, 2013, 58, 69-73.	2.3	6
129	Evidence of transplacental transmission of Encephalitozoon cuniculi genotype II in murine model. Experimental Parasitology, 2018, 193, 51-57.	1.2	6
130	<p>Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci</p> . Journal of Inflammation Research, 2020, Volume 13, 583-593.	3.5	5
131	Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health, 2021, 13, 100269.	3.4	5
132	Humoral response of chicken infected with the microsporidium Encephalitozoon hellem. Parasitology Research, 2006, 98, 488-492.	1.6	4
133	Comparison of the Concentration of Encephalitozoon cuniculi Genotypes I and III in Inflammatory Foci Under Experimental Conditions. Journal of Inflammation Research, 2022, Volume 15, 2721-2730.	3.5	4
134	The Lesser Egyptian Gerbil (Gerbillus gerbillus) is a suitable host for the long-term propagation of Cryptosporidium andersoni. Experimental Parasitology, 2013, 134, 438-442.	1.2	3
135	The course of infection of Encephalitozoon cuniculi genotype I in mice possess combination of features reported in genotypes II and III. Experimental Parasitology, 2021, 224, 108101.	1.2	3
136	Enterocytozoon Bieneusi Infects Children With Inflammatory Bowel Disease Undergoing Immunosuppressive Treatment. Frontiers in Medicine, 2021, 8, 741751.	2.6	3
137	A massive systematic infection of Encephalitozoon cuniculi genotype III in mice does not cause clinical signs. Microbes and Infection, 2020, 22, 467-473.	1.9	2
138	Intestinal parasites of dogs (<i>Canis lupus familiaris</i>) in Svalbard (Norway): low prevalence and limited transmission with wildlife. Canadian Journal of Zoology, 2021, 99, 249-255.	1.0	2
139	Raw Goat's Milk, Fresh and Soft Cheeses as a Potential Source of <i>Encephalitozoon cuniculi</i> . Foodborne Pathogens and Disease, 2021, 18, 661-667.	1.8	2
140	Chronic Infections in Mammals Due to Microsporidia. Experientia Supplementum (2012), 2022, 114, 319-371.	0.9	2
141	A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and Cryptosporidium baileyi oocysts. European Journal of Protistology, 2020, 75, 125718.	1.5	1
142	Sparse Evidence for Giardia intestinalis, Cryptosporidium spp. and Microsporidia Infections in Humans, Domesticated Animals and Wild Nonhuman Primates Sharing a Farm–Forest Mosaic Landscape in Western Uganda. Pathogens, 2021, 10, 933.	2.8	1
143	Limitations in the screening of potentially anti-cryptosporidial agents using laboratory rodents with gastric cryptosporidiosis. Folia Parasitologica, 2018, 65, .	1.3	0
144	Encephalitozoon cuniculi and Extraintestinal Microsporidiosis in Bird Owners. Emerging Infectious Diseases, 2022, 28, 705-708.	4.3	0