
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/71874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hormone-sensitive lipase. Journal of Lipid Research, 2002, 43, 1585-1594.	2.0	406
2	Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutrition and Metabolism, 2010, 7, 47.	1.3	356
3	IL-17 Regulates Adipogenesis, Glucose Homeostasis, and Obesity. Journal of Immunology, 2010, 185, 6947-6959.	0.4	309
4	Stimulation of Lipolysis and Hormone-sensitive Lipase via the Extracellular Signal-regulated Kinase Pathway. Journal of Biological Chemistry, 2001, 276, 45456-45461.	1.6	306
5	Efficient transformation ofAgrobacteriumspp. by high voltage electroporation. Nucleic Acids Research, 1989, 17, 8385-8385.	6.5	288
6	SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annual Review of Physiology, 2018, 80, 95-116.	5.6	257
7	Control of Adipose Triglyceride Lipase Action by Serine 517 of Perilipin A Globally Regulates Protein Kinase A-stimulated Lipolysis in Adipocytes. Journal of Biological Chemistry, 2007, 282, 996-1002.	1.6	252
8	Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5528-5532.	3.3	196
9	PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-Î3. Future Cardiology, 2017, 13, 279-296.	0.5	183
10	Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants Plant Cell, 1989, 1, 391-401.	3.1	172
11	Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1182-E1195.	1.8	142
12	Lipid droplets and steroidogenic cells. Experimental Cell Research, 2016, 340, 209-214.	1.2	123
13	Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics, 2011, 12, 212.	1.2	122
14	PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiology, 2017, 13, 259-278.	0.5	120
15	Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. Journal of Lipid Research, 2009, 50, 2306-2313.	2.0	103
16	MicroRNAs 125a and 455 Repress Lipoprotein-Supported Steroidogenesis by Targeting Scavenger Receptor Class B Type I in Steroidogenic Cells. Molecular and Cellular Biology, 2012, 32, 5035-5045.	1.1	102
17	Fatty Acid-binding Protein-Hormone-sensitive Lipase Interaction. Journal of Biological Chemistry, 2003, 278, 47636-47643.	1.6	95
18	Hormone-Sensitive Lipase Is Required for High-Density Lipoprotein Cholesteryl Ester-Supported Adrenal Steroidogenesis. Molecular Endocrinology, 2004, 18, 549-557.	3.7	95

#	Article	lF	CITATIONS
19	Thematic Review Series: Lipid Transfer Proteins Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. Journal of Lipid Research, 2018, 59, 1114-1131.	2.0	95
20	Lipid droplet metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 632-637.	1.3	78
21	Mutational Analysis of Structural Features of Rat Hormone-Sensitive Lipaseâ€. Biochemistry, 1998, 37, 8973-8979.	1.2	75
22	Characterization of the Functional Interaction of Adipocyte Lipid-binding Protein with Hormone-sensitive Lipase. Journal of Biological Chemistry, 2001, 276, 49443-49448.	1.6	74
23	Scavenger Receptor class B type I (SR-BI): A versatile receptor with multiple functions and actions. Metabolism: Clinical and Experimental, 2014, 63, 875-886.	1.5	74
24	Adipocytes decrease Runx2 expression in osteoblastic cells: Roles of PPARÎ ³ and adiponectin. Journal of Cellular Physiology, 2010, 225, 837-845.	2.0	70
25	The Proteome of Cholesteryl-Ester-Enriched Versus Triacylglycerol-Enriched Lipid Droplets. PLoS ONE, 2014, 9, e105047.	1.1	68
26	Interaction of Hormone-sensitive Lipase with Steroidogeneic Acute Regulatory Protein. Journal of Biological Chemistry, 2003, 278, 43870-43876.	1.6	67
27	Ablation of Vimentin Results in Defective Steroidogenesis. Endocrinology, 2012, 153, 3249-3257.	1.4	64
28	Hormone-Sensitive Lipase Functions as an Oligomerâ€. Biochemistry, 2000, 39, 2392-2398.	1.2	63
29	Hormonal Regulation of MicroRNA Expression in Steroid Producing Cells of the Ovary, Testis and Adrenal Gland. PLoS ONE, 2013, 8, e78040.	1.1	62
30	Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. Journal of Cellular Biochemistry, 2001, 82, 187-199.	1.2	61
31	Cholesterol ester droplets and steroidogenesis. Molecular and Cellular Endocrinology, 2013, 371, 15-19.	1.6	60
32	Adrenal Neutral Cholesteryl Ester Hydrolase: Identification, Subcellular Distribution, and Sex Differences. Endocrinology, 2002, 143, 801-806.	1.4	58
33	Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1109-E1118.	1.8	56
34	Absence of Hormone-sensitive Lipase Inhibits Obesity and Adipogenesis in Lep Mice. Journal of Biological Chemistry, 2004, 279, 15084-15090.	1.6	55
35	Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. Journal of Endocrinology, 2008, 198, 193-207.	1.2	54
36	Hormone-sensitive lipase modulates adipose metabolism through PPARÎ ³ . Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 9-16.	1.2	54

#	Article	IF	CITATIONS
37	Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E857-E866.	1.8	52
38	Cardiac gene expression profile and lipid accumulation in response to starvation. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E94-E102.	1.8	51
39	Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. Journal of Lipid Research, 2013, 54, 734-743.	2.0	49
40	Hormone-Sensitive Lipase Knockouts. Nutrition and Metabolism, 2006, 3, 12.	1.3	47
41	Regulation of adrenal and ovarian steroidogenesis by miR-132. Journal of Molecular Endocrinology, 2017, 59, 269-283.	1.1	39
42	p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene. Journal of Molecular Endocrinology, 2014, 53, 1-16.	1.1	37
43	Effects of rosiglitazone and high fat diet on lipase/esterase expression in adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 177-184.	1.2	36
44	COVID-19 May Increase the Risk of Insulin Resistance in Adult Patients Without Diabetes: A 6-Month Prospective Study. Endocrine Practice, 2021, 27, 834-841.	1.1	35
45	SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. Molecular Endocrinology, 2016, 30, 234-247.	3.7	34
46	Vimentin Is a Functional Partner of Hormone Sensitive Lipase And Facilitates Lipolysis. Journal of Proteome Research, 2010, 9, 1786-1794.	1.8	33
47	Regulation of Expression and Function of Scavenger Receptor Class B, Type I (SR-BI) by Na+/H+ Exchanger Regulatory Factors (NHERFs). Journal of Biological Chemistry, 2013, 288, 11416-11435.	1.6	33
48	The LDL receptor is not necessary for acute adrenal steroidogenesis in mouse adrenocortical cells. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E408-E412.	1.8	31
49	The role of miRNAs in regulating adrenal and gonadal steroidogenesis. Journal of Molecular Endocrinology, 2020, 64, R21-R43.	1.1	30
50	Age-Related Modulation of the Effects of Obesity on Gene Expression Profiles of Mouse Bone Marrow and Epididymal Adipocytes. PLoS ONE, 2013, 8, e72367.	1.1	29
51	SNAREs and cholesterol movement for steroidogenesis. Molecular and Cellular Endocrinology, 2017, 441, 17-21.	1.6	27
52	ACTH Regulation of Adrenal SR-B1. Frontiers in Endocrinology, 2016, 7, 42.	1.5	24
53	SOD2 deficiency-induced oxidative stress attenuates steroidogenesis in mouse ovarian granulosa cells. Molecular and Cellular Endocrinology, 2021, 519, 110888.	1.6	24
54	Differential Roles of Cysteine Residues in the Cellular Trafficking, Dimerization, and Function of the High-Density Lipoprotein Receptor, SR-BI. Biochemistry, 2011, 50, 10860-10875.	1.2	22

#	Article	IF	CITATIONS
55	Nordihydroguaiaretic acid improves metabolic dysregulation and aberrant hepatic lipid metabolism in mice by both PPARα-dependent and -independent pathways. American Journal of Physiology - Renal Physiology, 2013, 304, G72-G86.	1.6	22
56	Tissue-Specific Ablation of ACSL4 Results in Disturbed Steroidogenesis. Endocrinology, 2019, 160, 2517-2528.	1.4	22
57	Mutational Analysis of the "Regulatory Module―of Hormone-Sensitive Lipase. Biochemistry, 2005, 44, 1953-1959.	1.2	21
58	A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry, 2015, 54, 6917-6930.	1.2	21
59	Scavenger receptor class B, type 1 facilitates cellular fatty acid uptake. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158554.	1.2	20
60	Effect of Creosote Bush-Derived NDGA on Expression of Genes Involved in Lipid Metabolism in Liver of High-Fructose Fed Rats: Relevance to NDGA Amelioration of Hypertriglyceridemia and Hepatic Steatosis. PLoS ONE, 2015, 10, e0138203.	1.1	19
61	Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reproductive Biology and Endocrinology, 2017, 15, 19.	1.4	19
62	Nordihydroguaiaretic Acid, a Lignan from <i>Larrea tridentata</i> (Creosote Bush), Protects Against American Lifestyle-Induced Obesity Syndrome Diet–Induced Metabolic Dysfunction in Mice. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 281-290.	1.3	17
63	Functional analysis of the promoter region of a nodule-enhanced glutamine synthetase gene from Phaseolus vulgaris L Plant Molecular Biology, 1992, 19, 837-846.	2.0	16
64	Adrenal Neutral Cholesteryl Ester Hydrolase: Identification, Subcellular Distribution, and Sex Differences. Endocrinology, 2002, 143, 801-806.	1.4	16
65	Dysregulation of microRNA-125a contributes to obesity-associated insulin resistance and dysregulates lipid metabolism in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158640.	1.2	15
66	Generation of Novel Adipocyte Monolayer Cultures from Embryonic Stem Cells. Stem Cells and Development, 2007, 16, 371-380.	1,1	14
67	Overexpression of leptin in transgenic mice leads to decreased basal lipolysis, PKA activity, and perilipin levels. Biochemical and Biophysical Research Communications, 2003, 312, 1165-1170.	1.0	12
68	Gene Expression Profile of Human Skeletal Muscle and Adipose Tissue of Chinese Han Patients with Type 2 Diabetes Mellitus. Biomedical and Environmental Sciences, 2009, 22, 359-368.	0.2	12
69	Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice. Journal of Lipid Research, 2015, 56, 1068-1078.	2.0	11
70	Microarray analysis of gene expression in liver, adipose tissue and skeletal muscle in response to chronic dietary administration of NDGA to high-fructose fed dyslipidemic rats. Nutrition and Metabolism, 2016, 13, 63.	1.3	11
71	Plasma membrane cholesterol trafficking in steroidogenesis. FASEB Journal, 2019, 33, 1389-1400.	0.2	11
72	Function of hormone-sensitive lipase in diacylglycerol–protein kinase C pathway. Diabetes Research and Clinical Practice, 2004, 65, 209-215.	1.1	10

#	Article	IF	CITATIONS
73	Slc43a3 is a regulator of free fatty acid flux. Journal of Lipid Research, 2020, 61, 734-745.	2.0	10
74	NHERF1 and NHERF2 regulation of SR-B1 stability via ubiquitination and proteasome degradation. Biochemical and Biophysical Research Communications, 2017, 490, 1168-1175.	1.0	9
75	LDL and cAMP cooperate to regulate the functional expression of the LRP in rat ovarian granulosa cells. Journal of Lipid Research, 2006, 47, 2538-2550.	2.0	8
76	Regulation of hormone-sensitive lipase in islets. Diabetes Research and Clinical Practice, 2007, 75, 14-26.	1.1	8
77	Hormoneâ€sensitive lipaseâ€knockout mice maintain high bone density during aging. FASEB Journal, 2011, 25, 2722-2730.	0.2	8
78	WNT-activated bone grafts repair osteonecrotic lesions in aged animals. Scientific Reports, 2017, 7, 14254.	1.6	8
79	Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Molecular and Cellular Endocrinology, 2019, 498, 110538.	1.6	8
80	Over-expression of miR-34c leads to early-life visceral fat accumulation and insulin resistance. Scientific Reports, 2019, 9, 13844.	1.6	8
81	Molecular changes in hepatic metabolism in ZDSD rats–A new polygenic rodent model of obesity, metabolic syndrome, and diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165688.	1.8	8
82	Impact of Aging on Cholesterol Transport Protein Expression and Steroidogenesis in Rat Testicular Leydig Cells. Open Longevity Science, 2008, 2, 76-85.	0.8	7
83	Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer. Journal of Rheology, 2015, 59, 33-50.	1.3	5
84	Novel ABCA1 peptide agonists with antidiabetic action. Molecular and Cellular Endocrinology, 2019, 480, 1-11.	1.6	5
85	Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (<i>Mirounga angustirostris</i>). Physiological and Biochemical Zoology, 2015, 88, 284-294.	0.6	4
86	Antiâ€hyperlipidaemic effects of synthetic analogues of nordihydroguaiaretic acid in dyslipidaemic rats. British Journal of Pharmacology, 2019, 176, 369-385.	2.7	4
87	The adaptor protein GIPC1 stabilizes the scavenger receptor SR-B1 and increases its cholesterol uptake. Journal of Biological Chemistry, 2021, 296, 100616.	1.6	4
88	Chemerin regulates formation and function of brown adipose tissue: Ablation results in increased insulin resistance with high fat challenge and aging. FASEB Journal, 2021, 35, e21687.	0.2	3
89	SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166304.	1.8	3
90	Post-transcriptional and Post-translational Regulation of Steroidogenesis. , 2016, , 253-275.		2

#	Article	IF	CITATIONS
91	Hormone sensitive lipase ablation promotes bone regeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166449.	1.8	1
92	Correction: IL-17 Regulates Adipogenesis, Glucose Homeostasis, and Obesity. Journal of Immunology, 2011, 186, 1291-1291.	0.4	0
93	Antiâ€hyperlipidemic actions of synthetic nordihydroguaiaretic acid analogs (767.1). FASEB Journal, 2014, 28, 767.1.	0.2	Ο