Cindy L Will

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187354/publications.pdf

Version: 2024-02-01

331670 454955 6,179 30 21 30 h-index citations g-index papers 31 31 31 7346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell, 2009, 136, 701-718.	28.9	2,190
2	Spliceosome Structure and Function. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003707-a003707.	5.5	1,216
3	Small Nuclear Ribonucleoprotein Remodeling During Catalytic Activation of the Spliceosome. Science, 2002, 298, 2205-2208.	12.6	330
4	Isolation of an active step I spliceosome and composition of its RNP core. Nature, 2008, 452, 846-850.	27.8	330
5	Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Cell, 2017, 170, 701-713.e11.	28.9	217
6	Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nature Communications, 2012, 3, 994.	12.8	211
7	Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Molecular Cell, 2016, 64, 307-319.	9.7	197
8	Semiquantitative Proteomic Analysis of the Human Spliceosome via a Novel Two-Dimensional Gel Electrophoresis Method. Molecular and Cellular Biology, 2011, 31, 2667-2682.	2.3	168
9	A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO Journal, 2004, 23, 2381-2391.	7.8	159
10	Characterization of purified human B ^{act} spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. Rna, 2010, 16, 2384-2403.	3.5	142
11	Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032417.	5.5	141
12	Splicing of a rare class of introns by the U12-dependent spliceosome. Biological Chemistry, 2005, 386, 713-24.	2.5	126
13	Structural Basis of Splicing Modulation by Antitumor Macrolide Compounds. Molecular Cell, 2018, 70, 265-273.e8.	9.7	126
14	Molecular Architecture of the Human Prp19/CDC5L Complex. Molecular and Cellular Biology, 2010, 30, 2105-2119.	2.3	120
15	Exon Definition Complexes Contain the Tri-snRNP and Can Be Directly Converted into B-like Precatalytic Splicing Complexes. Molecular Cell, 2010, 38, 223-235.	9.7	74
16	The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes. Nature Structural and Molecular Biology, 2015, 22, 138-144.	8.2	67
17	A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nature Communications, 2016, 7, 11997.	12.8	51
18	Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. Science, 2020, 370, .	12.6	50

#	Article	IF	CITATIONS
19	Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. ELife, $2017, 6, .$	6.0	40
20	Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biology, 2014, 11, 298-312.	3.1	39
21	SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing. Nucleic Acids Research, 2017, 45, 6729-6745.	14.5	35
22	Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns. Nature Communications, 2019, 10, 3639.	12.8	26
23	Multiple protein–protein interactions converging on the Prp38 protein during activation of the human spliceosome. Rna, 2016, 22, 265-277.	3.5	24
24	Rational Design of Cyclic Peptide Inhibitors of U2AF Homology Motif (UHM) Domains To Modulate Pre-mRNA Splicing. Journal of Medicinal Chemistry, 2016, 59, 10190-10197.	6.4	20
25	Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly. Nature Communications, 2020, $11,5621$.	12.8	20
26	The RES complex is required for efficient transformation of the precatalytic B spliceosome into an activated B ^{act} complex. Genes and Development, 2017, 31, 2416-2429.	5.9	18
27	The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Research, 2018, 46, 3774-3790.	14.5	17
28	Stable tri-snRNP integration is accompanied by a major structural rearrangement of the spliceosome that is dependent on Prp8 interaction with the $5\hat{a} \in \mathbb{R}^2$ splice site. Rna, 2015, 21, 1993-2005.	3.5	10
29	U6atac snRNA stem-loop interacts with U12 p65 RNA binding protein and is functionally interchangeable with the U12 apical stem-loop III. Scientific Reports, 2016, 6, 31393.	3.3	8
30	Multiple RNA–RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome. Nucleic Acids Research, 2018, 46, 12126-12138.	14.5	7